Suppr超能文献

新型琥珀酰亚胺噻唑烷二酮类化合物作为多靶点抗糖尿病药物的设计、合成、生物评价及分子模拟研究。

New Succinimide-Thiazolidinedione Hybrids as Multitarget Antidiabetic Agents: Design, Synthesis, Bioevaluation, and Molecular Modelling Studies.

机构信息

Pediatric Department, Medical College, Najran University, Najran 55461, Saudi Arabia.

Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia.

出版信息

Molecules. 2023 Jan 26;28(3):1207. doi: 10.3390/molecules28031207.

Abstract

Diabetes mellitus (DM) is a metabolic disorder majorly arising from the pathophysiology of the pancreas manifested as a decline in the insulin production or the tissue's resistance to the insulin. In this research, we have rationally designed and synthesized new succinimide-thiazolidinedione hybrids for the management of DM. In a multistep reaction, we were able to synthesize five new derivatives (). All the compounds were new containing a different substitution pattern on the N-atom of the succinimide ring. Initially, all the compounds were tested against the in vitro α-glucosidase, α-amylase, PTP1B, and DPP4 targets. In all of these targets, the compound was observed to be the most potential antidiabetic agent. Based on this, the antidiabetic activity of the compound was further investigated in experimental animals, which overall gave us encouraging results. The molecular docking studies of the compound was also performed against the target enzymes α-glucosidase, α-amylase, PTP1B, and DPP4 using MOE. Overall, we observed that we have explored a new class of compounds as potential antidiabetic agents.

摘要

糖尿病(DM)是一种代谢紊乱,主要源于胰腺的病理生理学,表现为胰岛素产生减少或组织对胰岛素的抵抗。在这项研究中,我们合理设计并合成了新的琥珀酰亚胺噻唑烷二酮杂合体,以用于糖尿病的治疗。通过多步反应,我们成功合成了五个新的衍生物()。所有化合物均为新型化合物,其琥珀酰亚胺环上的 N 原子具有不同的取代模式。最初,我们对所有化合物进行了体外α-葡萄糖苷酶、α-淀粉酶、PTP1B 和 DPP4 靶点的测试。在所有这些靶点中,化合物 被观察到是最有潜力的抗糖尿病药物。基于这一点,我们进一步在实验动物中研究了化合物 的抗糖尿病活性,总体结果令人鼓舞。我们还使用 MOE 对化合物 与靶酶α-葡萄糖苷酶、α-淀粉酶、PTP1B 和 DPP4 进行了分子对接研究。总的来说,我们观察到我们已经探索了一类新的化合物作为潜在的抗糖尿病药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b877/9918900/b1f88194e089/molecules-28-01207-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验