Suppr超能文献

计算机辅助药物设计及其在 COVID-19 中的应用的最新综述。

An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19.

机构信息

Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, 793022 Meghalaya, India.

Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

出版信息

Biomed Res Int. 2021 Jun 24;2021:8853056. doi: 10.1155/2021/8853056. eCollection 2021.

Abstract

The recent outbreak of the deadly coronavirus disease 19 (COVID-19) pandemic poses serious health concerns around the world. The lack of approved drugs or vaccines continues to be a challenge and further necessitates the discovery of new therapeutic molecules. Computer-aided drug design has helped to expedite the drug discovery and development process by minimizing the cost and time. In this review article, we highlight two important categories of computer-aided drug design (CADD), viz., the ligand-based as well as structured-based drug discovery. Various molecular modeling techniques involved in structure-based drug design are molecular docking and molecular dynamic simulation, whereas ligand-based drug design includes pharmacophore modeling, quantitative structure-activity relationship (QSARs), and artificial intelligence (AI). We have briefly discussed the significance of computer-aided drug design in the context of COVID-19 and how the researchers continue to rely on these computational techniques in the rapid identification of promising drug candidate molecules against various drug targets implicated in the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The structural elucidation of pharmacological drug targets and the discovery of preclinical drug candidate molecules have accelerated both structure-based as well as ligand-based drug design. This review article will help the clinicians and researchers to exploit the immense potential of computer-aided drug design in designing and identification of drug molecules and thereby helping in the management of fatal disease.

摘要

最近爆发的致命冠状病毒病 19(COVID-19)大流行在全球范围内引发了严重的健康问题。缺乏批准的药物或疫苗仍然是一个挑战,因此需要进一步发现新的治疗分子。计算机辅助药物设计通过最小化成本和时间,有助于加速药物发现和开发过程。在这篇综述文章中,我们强调了计算机辅助药物设计(CADD)的两个重要类别,即基于配体和基于结构的药物发现。基于结构的药物设计中涉及的各种分子建模技术包括分子对接和分子动力学模拟,而基于配体的药物设计包括药效团建模、定量构效关系(QSARs)和人工智能(AI)。我们简要讨论了计算机辅助药物设计在 COVID-19 背景下的重要性,以及研究人员如何继续依赖这些计算技术快速识别针对严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)发病机制中涉及的各种药物靶标的有前途的候选药物分子。药理药物靶标的结构阐明和临床前药物候选分子的发现加速了基于结构和基于配体的药物设计。这篇综述文章将帮助临床医生和研究人员充分利用计算机辅助药物设计在设计和鉴定药物分子方面的巨大潜力,从而帮助治疗致命疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4718/8241505/e5d336d1755d/BMRI2021-8853056.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验