Suppr超能文献

计算药物设计策略对抗 COVID-19 大流行。

Computational Drug Design Strategies for Fighting the COVID-19 Pandemic.

机构信息

Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco.

Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco.

出版信息

Adv Exp Med Biol. 2024;1457:199-214. doi: 10.1007/978-3-031-61939-7_11.

Abstract

The advent of COVID-19 has brought the use of computer tools to the fore in health research. In recent years, computational methods have proven to be highly effective in a variety of areas, including genomic surveillance, host range prediction, drug target identification, and vaccine development. They were also instrumental in identifying new antiviral compounds and repurposing existing therapeutics to treat COVID-19. Using computational approaches, researchers have made significant advances in understanding the molecular mechanisms of COVID-19 and have developed several promising drug candidates and vaccines. This chapter highlights the critical importance of computational drug design strategies in elucidating various aspects of COVID-19 and their contribution to advancing global drug design efforts during the pandemic. Ultimately, the use of computing tools will continue to play an essential role in health research, enabling researchers to develop innovative solutions to combat new and emerging diseases.

摘要

新冠疫情的爆发使得计算机工具在医学研究中得到了广泛应用。近年来,计算方法已被证明在多个领域非常有效,包括基因组监测、宿主范围预测、药物靶点识别和疫苗开发。它们在识别新的抗病毒化合物和重新利用现有疗法治疗 COVID-19 方面也发挥了重要作用。研究人员使用计算方法在理解 COVID-19 的分子机制方面取得了重大进展,并开发了几种有前途的药物候选物和疫苗。本章强调了计算药物设计策略在阐明 COVID-19 的各个方面的关键重要性,以及它们对推进大流行期间全球药物设计工作的贡献。最终,计算工具的使用将继续在医学研究中发挥重要作用,使研究人员能够开发创新的解决方案来应对新出现的疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验