Institute of Biophysics , Ulm University , Albert-Einstein-Allee 11 , Ulm 89081 , Germany.
Center for Translational Imaging (MoMAN) , Ulm University , Albert-Einstein-Allee 11 , Ulm 89091 , Germany.
J Phys Chem B. 2018 Dec 13;122(49):11677-11694. doi: 10.1021/acs.jpcb.8b07719. Epub 2018 Oct 30.
Förster resonance energy transfer (FRET) can be used to measure distances and infer structures at the molecular level. However, the flexible linkers with which the fluorophores are attached to a macromolecule introduce a lack of knowledge. Both the dye's geometry and kinetics give rise to uncertainties. Whereas the impact of the geometry is already well understood, the real extent of the kinetics has not been investigated thoroughly. Here, we present a single-molecule (sm)FRET theory that defines the kinetics of dye movements in a complete form. We introduce a formal nomenclature and provide a recipe for the calculation of the corresponding FRET efficiency. We further analyze experimental data in order to obtain parameters characterizing the geometry and kinetics of the FRET dyes and use them to resimulate the FRET efficiencies by diffusion of fluorophore and linker movement. We show in a real case scenario of dye molecules attached to dsDNA that when making geometrical and kinetic assumptions commonly used in the FRET community one obtains results differing from the experimental data. In contrast, our stochastic simulations taking kinetic parameters from experiments into account reproduce the correct FRET efficiencies. Furthermore, we present a method enabling us to classify the kinetics of the dyes by investigating single realizations of the simulated transfer process. The results support our notion that the common kinetic assumptions are not appropriate over the whole range of distances inferred by FRET even for the simple situation of dyes attached to DNA where few interactions occur.
Förster 共振能量转移(FRET)可用于测量分子水平的距离和推断结构。然而,荧光染料与大分子连接的柔性连接子会导致知识的缺乏。染料的几何形状和动力学都会引起不确定性。尽管几何形状的影响已经得到很好的理解,但动力学的实际程度尚未得到彻底研究。在这里,我们提出了一种单分子(sm)FRET 理论,以完整的形式定义了染料运动的动力学。我们引入了正式的命名法,并提供了计算相应 FRET 效率的方法。我们进一步分析了实验数据,以获得表征 FRET 染料的几何形状和动力学的参数,并使用它们通过荧光染料和连接子运动的扩散来重新模拟 FRET 效率。我们在一个将染料分子附着到 dsDNA 的实际案例中表明,当在 FRET 社区中使用常见的几何形状和动力学假设时,得到的结果与实验数据不同。相比之下,我们的随机模拟考虑了实验中的动力学参数,可以重现正确的 FRET 效率。此外,我们提出了一种方法,通过研究模拟转移过程的单个实现,使我们能够对染料的动力学进行分类。结果支持了我们的观点,即在 FRET 推断的整个距离范围内,即使对于附着在 DNA 上的染料这种相互作用较少的简单情况,常见的动力学假设也不适用。