Suppr超能文献

基于 CSAPSO-BP 神经网络的微波检测玻璃面板缺陷定量识别方法。

Quantitative Identification Method for Glass Panel Defects Using Microwave Detection Based on the CSAPSO-BP Neural Network.

机构信息

School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China.

Hubei Key Laboratory of Modern Manufacturing Quality Engineering, Wuhan 430068, China.

出版信息

Sensors (Basel). 2023 Jan 18;23(3):1097. doi: 10.3390/s23031097.

Abstract

To address the problem of the quantitative identification of glass panel surface defects, a new method combining the chaotic simulated annealing particle swarm algorithm (CSAPSO) and the BP neural network is proposed for the quantitative evaluation of microwave detection signals of glass panel defects. First, the parameters of the particle swarm optimization (PSO) algorithm are dynamically assigned using chaos theory to improve the global search capability of the PSO. Then, the CSAPSO-BP neural network model is constructed, and the return loss and phase of the microwave detection echo signal of glass panel defects are extracted as the input feature quantity of the network, from which the intrinsic connection between input and output is found through network training and testing to achieve the prediction of the depth and width of glass panel surface defects. The results show that the CSAPSO-BP network model can more accurately characterize the defect geometry of glass panels than the PSO-BP network model.

摘要

为了解决玻璃面板表面缺陷的定量识别问题,提出了一种将混沌模拟退火粒子群算法(CSAPSO)和 BP 神经网络相结合的新方法,用于定量评估玻璃面板缺陷的微波检测信号。首先,利用混沌理论动态分配粒子群优化(PSO)算法的参数,以提高 PSO 的全局搜索能力。然后,构建 CSAPSO-BP 神经网络模型,提取玻璃面板缺陷的微波检测回波信号的回波损耗和相位作为网络的输入特征量,通过网络训练和测试发现输入和输出之间的内在联系,从而实现对玻璃面板表面缺陷深度和宽度的预测。结果表明,CSAPSO-BP 网络模型比 PSO-BP 网络模型能够更准确地表征玻璃面板的缺陷几何形状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6e/9921799/ca2ad2bcd5fc/sensors-23-01097-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验