Suppr超能文献

基于 CSAPSO-BP 神经网络的微波检测玻璃面板缺陷定量识别方法。

Quantitative Identification Method for Glass Panel Defects Using Microwave Detection Based on the CSAPSO-BP Neural Network.

机构信息

School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China.

Hubei Key Laboratory of Modern Manufacturing Quality Engineering, Wuhan 430068, China.

出版信息

Sensors (Basel). 2023 Jan 18;23(3):1097. doi: 10.3390/s23031097.

Abstract

To address the problem of the quantitative identification of glass panel surface defects, a new method combining the chaotic simulated annealing particle swarm algorithm (CSAPSO) and the BP neural network is proposed for the quantitative evaluation of microwave detection signals of glass panel defects. First, the parameters of the particle swarm optimization (PSO) algorithm are dynamically assigned using chaos theory to improve the global search capability of the PSO. Then, the CSAPSO-BP neural network model is constructed, and the return loss and phase of the microwave detection echo signal of glass panel defects are extracted as the input feature quantity of the network, from which the intrinsic connection between input and output is found through network training and testing to achieve the prediction of the depth and width of glass panel surface defects. The results show that the CSAPSO-BP network model can more accurately characterize the defect geometry of glass panels than the PSO-BP network model.

摘要

为了解决玻璃面板表面缺陷的定量识别问题,提出了一种将混沌模拟退火粒子群算法(CSAPSO)和 BP 神经网络相结合的新方法,用于定量评估玻璃面板缺陷的微波检测信号。首先,利用混沌理论动态分配粒子群优化(PSO)算法的参数,以提高 PSO 的全局搜索能力。然后,构建 CSAPSO-BP 神经网络模型,提取玻璃面板缺陷的微波检测回波信号的回波损耗和相位作为网络的输入特征量,通过网络训练和测试发现输入和输出之间的内在联系,从而实现对玻璃面板表面缺陷深度和宽度的预测。结果表明,CSAPSO-BP 网络模型比 PSO-BP 网络模型能够更准确地表征玻璃面板的缺陷几何形状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6e/9921799/ca2ad2bcd5fc/sensors-23-01097-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验