Suppr超能文献

基于混合粒子群优化算法的人工神经网络模型对橡胶混凝土抗压强度的预测

Compressive Strength Prediction of Rubber Concrete Based on Artificial Neural Network Model with Hybrid Particle Swarm Optimization Algorithm.

作者信息

Huang Xiao-Yu, Wu Ke-Yang, Wang Shuai, Lu Tong, Lu Ying-Fa, Deng Wei-Chao, Li Hou-Min

机构信息

School of Civil Engineering, Architecture, and Environment, Hubei University of Technology, Wuhan 430068, China.

Wuhan Construction Engineering Company Limited, Wuhan 430056, China.

出版信息

Materials (Basel). 2022 May 31;15(11):3934. doi: 10.3390/ma15113934.

Abstract

Conventional neural networks tend to fall into local extremum on large datasets, while the research on the strength of rubber concrete using intelligent algorithms to optimize artificial neural networks is limited. Therefore, to improve the prediction accuracy of rubber concrete strength, an artificial neural network model with hybrid algorithm optimization was developed in this study. The main strategy is to mix the simulated annealing (SA) algorithm with the particle swarm optimization (PSO) algorithm, using the SA algorithm to compensate for the weak global search capability of the PSO algorithm at a later stage while changing the inertia factor of the PSO algorithm to an adaptive state. For this purpose, data were first collected from the published literature to create a database. Next, ANN and PSO-ANN models are also built for comparison while four evaluation metrics, MSE, RMSE, MAE, and R2, were used to assess the model performance. Finally, compared with empirical formulations and other neural network models, the result shows that the proposed optimized artificial neural network model successfully improves the accuracy of predicting the strength of rubber concrete. This provides a new option for predicting the strength of rubber concrete.

摘要

传统神经网络在大型数据集上容易陷入局部极值,而利用智能算法优化人工神经网络来研究橡胶混凝土强度的相关研究有限。因此,为提高橡胶混凝土强度预测精度,本研究开发了一种采用混合算法优化的人工神经网络模型。主要策略是将模拟退火(SA)算法与粒子群优化(PSO)算法相结合,利用SA算法弥补PSO算法后期全局搜索能力的不足,同时将PSO算法的惯性因子改为自适应状态。为此,首先从已发表的文献中收集数据以创建数据库。接下来,还构建了人工神经网络(ANN)和粒子群优化-人工神经网络(PSO-ANN)模型进行比较,同时使用均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R2)这四个评估指标来评估模型性能。最后,与经验公式和其他神经网络模型相比,结果表明所提出的优化人工神经网络模型成功提高了橡胶混凝土强度预测的准确性。这为预测橡胶混凝土强度提供了一种新的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/420f/9182238/6dc9a4df95e4/materials-15-03934-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验