Future Robotics Technology Center, Chiba Institute of Technology, Chiba 2750016, Japan.
Sensors (Basel). 2023 Jan 20;23(3):1205. doi: 10.3390/s23031205.
This paper presents a high-precision positioning method using raw global navigation satellite system (GNSS) observations from smartphones in the Google smartphone decimeter challenge (GSDC). Compared to commercial GNSS receivers, smartphone GNSS observations are noisy owing to antenna limitations, making it difficult to apply conventional high-precision positioning methods. In addition, it is important to exclude outliers in GSDC because GSDC includes data in environments where GNSS is shielded, such as tunnels and elevated structures. Therefore, this study proposes a smartphone positioning method based on a two-step optimization method, using factor graph optimization (FGO). Here, the velocity and position optimization process are separated and the velocity is first estimated from Doppler observations. Then, the outliers of the velocity estimated by FGO are excluded, while the missing velocity is interpolated. In the next position-optimization step, the velocity estimated in the previous step is adopted as a loose state-to-state constraint and the position is estimated using the time-differenced carrier phase (TDCP), which is more accurate than Doppler, but less available. The final horizontal positioning accuracy was 1.229 m, which was the first place, thus demonstrating the effectiveness of the proposed method.
本文提出了一种利用智能手机原始全球导航卫星系统 (GNSS) 观测值在 Google 智能手机分米挑战赛 (GSDC) 中实现高精度定位的方法。与商业 GNSS 接收机相比,由于天线限制,智能手机 GNSS 观测值存在噪声,因此难以应用传统的高精度定位方法。此外,由于 GSDC 包括 GNSS 被屏蔽的环境中的数据,例如隧道和高架结构,因此排除 GSDC 中的异常值很重要。因此,本研究提出了一种基于两步优化方法的智能手机定位方法,使用因子图优化 (FGO)。在这里,速度和位置优化过程是分开的,首先从多普勒观测中估计速度。然后,排除 FGO 估计的速度中的异常值,同时对缺失的速度进行插值。在下一个位置优化步骤中,采用前一步估计的速度作为松散的状态到状态约束,并使用时间差分载波相位 (TDCP) 估计位置,TDCP 比多普勒更准确,但可用性较低。最终的水平定位精度为 1.229 米,排名第一,从而证明了所提出方法的有效性。