Suppr超能文献

基于长短期记忆循环神经网络的温室通风口开度估算软传感器。

A Soft Sensor to Estimate the Opening of Greenhouse Vents Based on an LSTM-RNN Neural Network.

机构信息

LI3CUB Laboratory, Department of Electrical Engineering, University of Biskra, BP 145 RP, Biskra 07000, Algeria.

Department of Informatics, University of Almería, CIESOL, ceiA3, E04120 Almería, Spain.

出版信息

Sensors (Basel). 2023 Jan 21;23(3):1250. doi: 10.3390/s23031250.

Abstract

In greenhouses, sensors are needed to measure the variables of interest. They help farmers and allow automatic controllers to determine control actions to regulate the environmental conditions that favor crop growth. This paper focuses on the problem of the lack of monitoring and control systems in traditional Mediterranean greenhouses. In such greenhouses, most farmers manually operate the opening of the vents to regulate the temperature during the daytime. Therefore, the state of vent opening is not recorded because control systems are not usually installed due to economic reasons. The solution presented in this paper consists of developing a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) as a soft sensor to estimate vent opening using the measurements of different inside and outside greenhouse climate variables as input data. A dataset from a traditional greenhouse located in Almería (Spain) was used. The data were processed and analyzed to study the relationships between the measured climate variables and the state of vent opening, both statistically (using correlation coefficients) and graphically (with regression analysis). The dataset (with 81 recorded days) was then used to train, validate, and test a set of candidate LSTM-based networks for the soft sensor. The results show that the developed soft sensor can estimate the actual opening of the vents with a mean absolute error of 4.45%, which encourages integrating the soft sensor as part of decision support systems for farmers and using it to calculate other essential variables, such as greenhouse ventilation rate.

摘要

在温室中,需要传感器来测量感兴趣的变量。它们可以帮助农民,并且允许自动控制器确定控制措施,以调节有利于作物生长的环境条件。本文主要关注传统地中海温室中缺乏监控和控制系统的问题。在这样的温室中,大多数农民在白天手动操作通风口的开启,以调节温度。因此,由于经济原因,通常不安装控制系统,因此通风口的开启状态没有记录。本文提出的解决方案包括开发一个长短期记忆递归神经网络(LSTM-RNN)作为软传感器,使用不同的温室内部和外部气候变量的测量值作为输入数据来估计通风口的开启状态。使用了位于阿尔梅里亚(西班牙)的传统温室的数据集。对数据进行了处理和分析,以研究测量的气候变量与通风口开启状态之间的关系,包括统计关系(使用相关系数)和图形关系(使用回归分析)。然后,使用数据集(记录了 81 天)来训练、验证和测试一组基于 LSTM 的候选网络作为软传感器。结果表明,开发的软传感器可以以 4.45%的平均绝对误差估计通风口的实际开启状态,这鼓励将软传感器集成到农民的决策支持系统中,并用于计算其他重要变量,如温室通风率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/9921858/d7e7a0eb2ad9/sensors-23-01250-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验