Suppr超能文献

不同时间间隔下室内水培温室气候预测的时间序列深度学习模型性能分析

Performance Analysis of Time Series Deep Learning Models for Climate Prediction in Indoor Hydroponic Greenhouses at Different Time Intervals.

作者信息

Eraliev Oybek, Lee Chul-Hee

机构信息

Department of Future Vehicle Engineering, Inha University, 100 Inharo, Mitchuholgu, Incheon 22212, Republic of Korea.

Department of Mechanical Engineering, Inha University, 100 Inharo, Mitchuholgu, Incheon 22212, Republic of Korea.

出版信息

Plants (Basel). 2023 Jun 14;12(12):2316. doi: 10.3390/plants12122316.

Abstract

Indoor hydroponic greenhouses are becoming increasingly popular for sustainable food production. On the other hand, precise control of the climate conditions inside these greenhouses is crucial for the success of the crops. Time series deep learning models are adequate for climate predictions in indoor hydroponic greenhouses, but a comparative analysis of these models at different time intervals is needed. This study evaluated the performance of three commonly used deep learning models for climate prediction in an indoor hydroponic greenhouse: Deep Neural Network, Long-Short Term Memory (LSTM), and 1D Convolutional Neural Network. The performance of these models was compared at four time intervals (1, 5, 10, and 15 min) using a dataset collected over a week at one-minute intervals. The experimental results showed that all three models perform well in predicting the temperature, humidity, and CO concentration in a greenhouse. The performance of the models varied at different time intervals, with the LSTM model outperforming the other models at shorter time intervals. Increasing the time interval from 1 to 15 min adversely affected the performance of the models. This study provides insights into the effectiveness of time series deep learning models for climate predictions in indoor hydroponic greenhouses. The results highlight the importance of choosing the appropriate time interval for accurate predictions. These findings can guide the design of intelligent control systems for indoor hydroponic greenhouses and contribute to the advancement of sustainable food production.

摘要

室内水培温室在可持续粮食生产方面正变得越来越受欢迎。另一方面,精确控制这些温室内的气候条件对作物的成功种植至关重要。时间序列深度学习模型适用于室内水培温室的气候预测,但需要对这些模型在不同时间间隔下进行比较分析。本研究评估了三种常用于室内水培温室气候预测的深度学习模型的性能:深度神经网络、长短期记忆(LSTM)和一维卷积神经网络。使用以一分钟间隔收集的一周数据集,在四个时间间隔(1、5、10和15分钟)下比较了这些模型的性能。实验结果表明,所有三种模型在预测温室中的温度、湿度和CO浓度方面都表现良好。模型的性能在不同时间间隔下有所不同,LSTM模型在较短时间间隔下优于其他模型。将时间间隔从1分钟增加到15分钟会对模型的性能产生不利影响。本研究为时间序列深度学习模型在室内水培温室气候预测中的有效性提供了见解。结果突出了选择合适时间间隔以进行准确预测的重要性。这些发现可以指导室内水培温室智能控制系统的设计,并有助于推动可持续粮食生产的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c2f/10304734/073fbb44bbd6/plants-12-02316-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验