Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan.
Sensors (Basel). 2018 Dec 18;18(12):4484. doi: 10.3390/s18124484.
Convolutional Long Short-Term Memory Neural Networks (CNN-LSTM) are a variant of recurrent neural networks (RNN) that can extract spatial features in addition to classifying or making predictions from sequential data. In this paper, we analyzed the use of CNN-LSTM for gas source localization (GSL) in outdoor environments using time series data from a gas sensor network and anemometer. CNN-LSTM is used to estimate the location of a gas source despite the challenges created from inconsistent airflow and gas distribution in outdoor environments. To train CNN-LSTM for GSL, we used temporal data taken from a 5 × 6 metal oxide semiconductor (MOX) gas sensor array, spaced 1.5 m apart, and an anemometer placed in the center of the sensor array in an open area outdoors. The output of the CNN-LSTM is one of thirty cells approximating the location of a gas source. We show that by using CNN-LSTM, we were able to determine the location of a gas source from sequential data. In addition, we compared several artificial neural network (ANN) architectures as well as trained them without wind vector data to estimate the complexity of the task. We found that ANN is a promising prospect for GSL tasks.
卷积长短时记忆神经网络 (CNN-LSTM) 是一种递归神经网络 (RNN) 的变体,除了对序列数据进行分类或预测之外,它还可以提取空间特征。在本文中,我们使用来自气体传感器网络和风速计的时间序列数据,分析了卷积长短时记忆神经网络 (CNN-LSTM) 在户外环境中用于气源定位 (GSL) 的应用。CNN-LSTM 用于估计气源的位置,尽管户外环境中气流和气体分布不一致会带来挑战。为了训练 CNN-LSTM 进行 GSL,我们使用了来自 5×6 金属氧化物半导体 (MOX) 气体传感器阵列的时间数据,传感器阵列间隔 1.5 米,风速计放置在传感器阵列的中心,位于户外开阔区域。CNN-LSTM 的输出是 30 个单元中的一个,这些单元近似表示气源的位置。我们表明,通过使用 CNN-LSTM,我们能够从序列数据中确定气源的位置。此外,我们比较了几种人工神经网络 (ANN) 架构,并在没有风向矢量数据的情况下对它们进行了训练,以估计任务的复杂性。我们发现 ANN 是 GSL 任务的一个很有前途的前景。