Suppr超能文献

稳定的物理人机协作异宿型通道网络。

Stable Heteroclinic Channel Networks for Physical Human-Humanoid Robot Collaboration.

机构信息

Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia.

出版信息

Sensors (Basel). 2023 Jan 26;23(3):1396. doi: 10.3390/s23031396.

Abstract

Human-robot collaboration is one of the most challenging fields in robotics, as robots must understand human intentions and suitably cooperate with them in the given circumstances. But although this is one of the most investigated research areas in robotics, it is still in its infancy. In this paper, human-robot collaboration is addressed by applying a phase state system, guided by stable heteroclinic channel networks, to a humanoid robot. The base mathematical model is first defined and illustrated on a simple three-state system. Further on, an eight-state system is applied to a humanoid robot to guide it and make it perform different movements according to the forces exerted on its grippers. The movements presented in this paper are squatting, standing up, and walking forwards and backward, while the motion velocity depends on the magnitude of the applied forces. The method presented in this paper proves to be a suitable way of controlling robots by means of physical human-robot interaction. As the phase state system and the robot movements can both be further extended to make the robot execute many other tasks, the proposed method seems to provide a promising way for further investigation and realization of physical human-robot interaction.

摘要

人机协作是机器人学中最具挑战性的领域之一,因为机器人必须理解人类的意图,并在给定的情况下适当地与之合作。但是,尽管这是机器人学中研究最多的领域之一,但它仍处于起步阶段。本文通过应用相态系统,在稳定的异宿轨网络的指导下,解决了人形机器人的人机协作问题。首先定义了基本的数学模型,并在一个简单的三态系统上进行了说明。进一步,将八态系统应用于人形机器人,根据施加在其夹持器上的力来引导它并使其执行不同的运动。本文介绍的运动包括蹲下、站立和前后行走,而运动速度取决于施加力的大小。本文提出的方法通过物理人机交互来控制机器人,证明是一种合适的方法。由于相态系统和机器人运动都可以进一步扩展,以实现机器人执行许多其他任务,因此所提出的方法似乎为进一步研究和实现物理人机交互提供了一种有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c437/9921709/938a439ac182/sensors-23-01396-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验