Suppr超能文献

瞬态认知动力学、亚稳定性与决策

Transient cognitive dynamics, metastability, and decision making.

作者信息

Rabinovich Mikhail I, Huerta Ramón, Varona Pablo, Afraimovich Valentin S

机构信息

Institute for Nonlinear Science, University of California San Diego, La Jolla, California, United States of America.

出版信息

PLoS Comput Biol. 2008 May 2;4(5):e1000072. doi: 10.1371/journal.pcbi.1000072.

Abstract

The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain.

摘要

在过去15年里,认知活动可通过非线性动力学来理解这一观点已得到深入且详尽的讨论。一种流行的观点认为,亚稳态在认知功能的执行中起着关键作用。实验和建模研究表明,这些功能大多是大脑大规模网络在存在噪声情况下瞬态活动的结果。这种瞬态可能由不同亚稳态认知状态之间的顺序切换组成。使用动力学理论描述瞬态认知过程时面临的主要问题是瞬态行为的可重复性与灵活性之间的根本矛盾。在本文中,我们基于功能相关的亚稳态认知状态的相互作用,提出了一种瞬态认知动力学的理论描述。这种瞬态活动的数学图像是一个稳定的异宿通道,即由鞍点和连接其周围环境的不稳定分界线组成的异宿骨架附近的一组轨迹。我们提出了一个基本的数学模型,一个强耗散动力系统,并制定了满足稳定性和灵活性竞争要求的认知瞬态的鲁棒性和可重复性条件。基于此方法,我们在此描述了一个顺序决策问题的有效解决方案,该问题表示为一个固定时间博弈:玩家在不断变化的噪声环境中采取顺序行动,以最大化累积奖励。正如我们在计算机模拟中预测和验证的那样,噪声在优化收益方面起着重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb43/2358972/4bb297922825/pcbi.1000072.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验