School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan.
Sensors (Basel). 2023 Feb 1;23(3):1586. doi: 10.3390/s23031586.
Unmanned aerial vehicle (UAV)-assisted networks ensure agile and flexible solutions based on the inherent attributes of mobility and altitude adaptation. These features render them suitable for emergency search and rescue operations. Emergency networks (ENs) differ from conventional networks. They often encounter nodes with vital information, i.e., critical nodes (CNs). The efficacy of search and rescue operations highly depends on the eminent coverage of critical nodes to retrieve crucial data. In a UAV-assisted EN, the information delivery from these critical nodes can be ensured through quality-of-service (QoS) guarantees, such as capacity and age of information (AoI). In this work, optimized UAV placement for critical nodes in emergency networks is studied. Two different optimization problems, namely capacity maximization and age of information minimization, are formulated based on the nature of node criticality. Capacity maximization provides general QoS enhancement for critical nodes, whereas AoI is focused on nodes carrying critical information. Simulations carried out in this paper aim to find the optimal placement for each problem based on a two-step approach. At first, the disaster region is partitioned based on CNs' aggregation. Reinforcement learning (RL) is then applied to observe optimal placement. Finally, network coverage over optimal UAV(s) placement is studied for two scenarios, i.e., network-centric and user-centric. In addition to providing coverage to critical nodes, the proposed scheme also ensures maximum coverage for all on-scene available devices (OSAs).
无人机 (UAV) 辅助网络基于移动性和高度适应性的固有属性,确保了灵活敏捷的解决方案。这些特点使它们非常适合紧急搜索和救援行动。应急网络 (EN) 与传统网络不同。它们通常会遇到包含重要信息的节点,即关键节点 (CN)。搜索和救援行动的效果高度取决于对关键节点的卓越覆盖,以检索关键数据。在无人机辅助的 EN 中,可以通过服务质量 (QoS) 保证来确保这些关键节点的信息传递,例如容量和信息年龄 (AoI)。在这项工作中,研究了应急网络中关键节点的优化无人机放置。根据节点关键性的性质,制定了两个不同的优化问题,即最大化容量和最小化信息年龄。容量最大化提供了关键节点的一般 QoS 增强,而 AoI 则专注于携带关键信息的节点。本文中的仿真旨在根据两步方法找到每个问题的最佳放置。首先,根据 CN 的聚合对受灾区域进行分区。然后应用强化学习 (RL) 来观察最佳位置。最后,研究了两种场景(网络中心和用户中心)下最优 UAV 放置的网络覆盖。除了为关键节点提供覆盖之外,所提出的方案还确保了对所有现场可用设备 (OSA) 的最大覆盖。