Suppr超能文献

无人机辅助公共安全网络的强化学习路由协议。

A Reinforcement Learning Routing Protocol for UAV Aided Public Safety Networks.

机构信息

School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.

Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan.

出版信息

Sensors (Basel). 2021 Jun 15;21(12):4121. doi: 10.3390/s21124121.

Abstract

In Public Safety Networks (PSNs), the conservation of on-scene device energy is critical to ensure long term connectivity to first responders. Due to the limited transmit power, this connectivity can be ensured by enabling continuous cooperation among on-scene devices through multipath routing. In this paper, we present a Reinforcement Learning (RL) and Unmanned Aerial Vehicle- (UAV) aided multipath routing scheme for PSNs. The aim is to increase network lifetime by improving the Energy Efficiency (EE) of the PSN. First, network configurations are generated by using different clustering schemes. The RL is then applied to configure the routing topology that considers both the immediate energy cost and the total distance cost of the transmission path. The performance of these schemes are analyzed in terms of throughput, energy consumption, number of dead nodes, delay, packet delivery ratio, number of cluster head changes, number of control packets, and EE. The results showed an improvement of approximately 42% in EE of the clustering scheme when compared with non-clustering schemes. Furthermore, the impact of UAV trajectory and the number of UAVs are jointly analyzed by considering various trajectory scenarios around the disaster area. The EE can be further improved by 27% using Two UAVs on Opposite Axis of the building and moving in the Opposite directions (TUOAO) when compared to a single UAV scheme. The result showed that although the number of control packets in both the single and two UAV scenarios are comparable, the total number of CH changes are significantly different.

摘要

在公共安全网络 (PSN) 中,现场设备能量的节约对于确保与第一响应者的长期连接至关重要。由于传输功率有限,可以通过启用现场设备之间的多路径路由来确保这种连接。在本文中,我们提出了一种用于 PSN 的强化学习 (RL) 和无人机 (UAV) 辅助多路径路由方案。目的是通过提高 PSN 的能量效率 (EE) 来延长网络寿命。首先,通过使用不同的聚类方案生成网络配置。然后,应用 RL 来配置路由拓扑,同时考虑传输路径的即时能量成本和总距离成本。根据吞吐量、能量消耗、死节点数量、延迟、分组投递率、簇头变化数量、控制分组数量和 EE 来分析这些方案的性能。结果表明,与非聚类方案相比,聚类方案的 EE 提高了约 42%。此外,还通过考虑灾区周围的各种轨迹场景,联合分析了无人机轨迹和无人机数量的影响。与单架无人机方案相比,使用两架无人机在建筑物的相对轴上并朝相反方向移动(Two UAVs on Opposite Axis of the building and moving in the Opposite directions,TUOAO)可将 EE 进一步提高 27%。结果表明,尽管单架和两架无人机方案中的控制分组数量相当,但 CH 变化的总数却有很大的不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8a/8232606/d94f5e8a9141/sensors-21-04121-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验