Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven-University of Leuven, B-3000 Leuven, Belgium.
Sensors (Basel). 2023 Feb 3;23(3):1704. doi: 10.3390/s23031704.
Navigation in virtual worlds is ubiquitous in games and other virtual reality (VR) applications and mainly relies on external controllers. As brain-computer interfaces (BCI)s rely on mental control, bypassing traditional neural pathways, they provide to paralyzed users an alternative way to navigate. However, the majority of BCI-based navigation studies adopt cue-based visual paradigms, and the evoked brain responses are encoded into navigation commands. Although robust and accurate, these paradigms are less intuitive and comfortable for navigation compared to imagining limb movements (motor imagery, MI). However, decoding motor imagery from EEG activity is notoriously challenging. Typically, wet electrodes are used to improve EEG signal quality, including a large number of them to discriminate between movements of different limbs, and a cuedbased paradigm is used instead of a self-paced one to maximize decoding performance. Motor BCI applications primarily focus on typing applications or on navigating a wheelchair-the latter raises safety concerns-thereby calling for sensors scanning the environment for obstacles and potentially hazardous scenarios. With the help of new technologies such as virtual reality (VR), vivid graphics can be rendered, providing the user with a safe and immersive experience; and they could be used for navigation purposes, a topic that has yet to be fully explored in the BCI community. In this study, we propose a novel MI-BCI application based on an 8-dry-electrode EEG setup, with which users can explore and navigate in Google Street View. We pay attention to system design to address the lower performance of the MI decoder due to the dry electrodes' lower signal quality and the small number of electrodes. Specifically, we restricted the number of navigation commands by using a novel middle-level control scheme and avoided decoder mistakes by introducing eye blinks as a control signal in different navigation stages. Both offline and online experiments were conducted with 20 healthy subjects. The results showed acceptable performance, even given the limitations of the EEG set-up, which we attribute to the design of the BCI application. The study suggests the use of MI-BCI in future games and VR applications for consumers and patients temporarily or permanently devoid of muscle control.
在游戏和其他虚拟现实 (VR) 应用中,虚拟世界中的导航无处不在,主要依赖于外部控制器。由于脑机接口 (BCI) 依赖于精神控制,绕过传统的神经通路,它们为瘫痪用户提供了一种替代导航的方法。然而,大多数基于 BCI 的导航研究采用基于提示的视觉范式,将诱发的大脑反应编码为导航命令。虽然这些范式稳健且准确,但与想象肢体运动 (运动想象,MI) 相比,它们在导航方面不太直观和舒适。然而,从 EEG 活动中解码运动想象是一项极具挑战性的任务。通常,使用湿电极来提高 EEG 信号质量,包括使用大量电极来区分不同肢体的运动,并使用基于提示的范式代替自定步速范式来最大化解码性能。运动 BCI 应用主要集中在打字应用程序或驾驶轮椅上 - 后者会引起安全问题 - 因此需要传感器来扫描环境中的障碍物和潜在危险情况。借助虚拟现实 (VR) 等新技术,可以呈现生动的图形,为用户提供安全和沉浸式的体验;并且可以将其用于导航目的,这是 BCI 社区尚未充分探索的主题。在这项研究中,我们提出了一种基于 8 个干电极 EEG 设置的新型 MI-BCI 应用程序,用户可以使用该应用程序在 Google Street View 中探索和导航。我们关注系统设计,以解决由于干电极信号质量较低和电极数量较少导致的 MI 解码器性能较低的问题。具体来说,我们通过使用新颖的中级控制方案限制导航命令的数量,并通过在不同导航阶段引入眨眼作为控制信号来避免解码器错误。我们对 20 名健康受试者进行了离线和在线实验。即使考虑到 EEG 设置的限制,结果也表明性能可以接受,我们将这归因于 BCI 应用程序的设计。该研究表明,对于暂时或永久丧失肌肉控制的消费者和患者,MI-BCI 可用于未来的游戏和 VR 应用。