Suppr超能文献

利用显微傅里叶变换红外光谱高光谱成像和深度学习对结肠癌进行组织病理学诊断。

Histopathological diagnosis of colon cancer using micro-FTIR hyperspectral imaging and deep learning.

作者信息

Muniz Frederico Barbosa, Baffa Matheus de Freitas Oliveira, Garcia Sergio Britto, Bachmann Luciano, Felipe Joaquim Cezar

机构信息

Department of Computing and Mathematics, University of São Paulo, Bandeirantes Av. 3900, Monte Alegre, Ribeirão Preto, SP 14040-901, Brazil.

Department of Pathology and Legal Medicine, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.

出版信息

Comput Methods Programs Biomed. 2023 Apr;231:107388. doi: 10.1016/j.cmpb.2023.107388. Epub 2023 Feb 2.

Abstract

BACKGROUND AND OBJECTIVE

Current studies based on digital biopsy images have achieved satisfactory results in detecting colon cancer despite their limited visual spectral range. Such methods may be less accurate when applied to samples taken from the tumor margin region or to samples containing multiple diagnoses. In contrast with the traditional computer vision approach, micro-FTIR hyperspectral images quantify the tissue-light interaction on a histochemical level and characterize different tissue pathologies, as they present a unique spectral signature. Therefore, this paper investigates the possibility of using hyperspectral images acquired over micro-FTIR absorbance spectroscopy to characterize healthy, inflammatory, and tumor colon tissues.

METHODS

The proposed method consists of modeling hyperspectral data into a voxel format to detect the patterns of each voxel using fully connected deep neural network. A web-based computer-aided diagnosis tool for inference is also provided.

RESULTS

Our experiments were performed using the K-fold cross-validation protocol in an intrapatient approach and achieved an overall accuracy of 99% using a deep neural network and 96% using a linear support vector machine. Through the experiments, we noticed the high performance of the method in characterizing such tissues using deep learning and hyperspectral images, indicating that the infrared spectrum contains relevant information and can be used to assist pathologists during the diagnostic process.

摘要

背景与目的

目前基于数字活检图像的研究在检测结肠癌方面取得了令人满意的结果,尽管其视觉光谱范围有限。当应用于从肿瘤边缘区域采集的样本或包含多种诊断的样本时,此类方法可能不太准确。与传统的计算机视觉方法不同,微傅里叶变换红外光谱(micro-FTIR)高光谱图像在组织化学水平上量化组织与光的相互作用,并表征不同的组织病理学特征,因为它们呈现出独特的光谱特征。因此,本文研究了利用通过微傅里叶变换红外吸收光谱获得的高光谱图像来表征健康、炎症和肿瘤性结肠组织的可能性。

方法

所提出的方法包括将高光谱数据建模为体素格式,以使用全连接深度神经网络检测每个体素的模式。还提供了一个基于网络的用于推理的计算机辅助诊断工具。

结果

我们的实验采用患者内方法的K折交叉验证协议进行,使用深度神经网络实现了99%的总体准确率,使用线性支持向量机实现了96%的总体准确率。通过实验,我们注意到该方法在使用深度学习和高光谱图像表征此类组织方面具有高性能,这表明红外光谱包含相关信息,可用于在诊断过程中协助病理学家。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验