Lin Hangzheng, Falahkheirkhah Kianoush, Kindratenko Volodymyr, Bhargava Rohit
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, United States.
Beckman Institute, University of Illinois at Urbana-Champaign, IL, United States.
Mach Learn Appl. 2024 Jun;16. doi: 10.1016/j.mlwa.2024.100549. Epub 2024 Apr 4.
Infrared (IR) spectroscopic imaging is of potentially wide use in medical imaging applications due to its ability to capture both chemical and spatial information. This complexity of the data both necessitates using machine intelligence as well as presents an opportunity to harness a high-dimensionality data set that offers far more information than today's manually-interpreted images. While convolutional neural networks (CNNs), including the well-known U-Net model, have demonstrated impressive performance in image segmentation, the inherent locality of convolution limits the effectiveness of these models for encoding IR data, resulting in suboptimal performance. In this work, we propose an INfrared Spectroscopic imaging-based TRAnsformers for medical image Segmentation (INSTRAS). This novel model leverages the strength of the transformer encoders to segment IR breast images effectively. Incorporating skip-connection and transformer encoders, INSTRAS overcomes the issue of pure convolution models, such as the difficulty of capturing long-range dependencies. To evaluate the performance of our model and existing convolutional models, we conducted training on various encoder-decoder models using a breast dataset of IR images. INSTRAS, utilizing 9 spectral bands for segmentation, achieved a remarkable score of 0.9788, underscoring its superior capabilities compared to purely convolutional models. These experimental results attest to INSTRAS's advanced and improved segmentation abilities for IR imaging.
红外(IR)光谱成像由于能够捕获化学和空间信息,在医学成像应用中具有潜在的广泛用途。数据的这种复杂性既需要使用机器智能,也提供了利用高维数据集的机会,该数据集提供的信息比当今人工解读的图像要多得多。虽然包括著名的U-Net模型在内的卷积神经网络(CNN)在图像分割方面表现出了令人印象深刻的性能,但卷积固有的局部性限制了这些模型对红外数据进行编码的有效性,导致性能次优。在这项工作中,我们提出了一种用于医学图像分割的基于红外光谱成像的变压器(INSTRAS)。这个新颖的模型利用变压器编码器的优势来有效地分割红外乳腺图像。通过结合跳跃连接和变压器编码器,INSTRAS克服了纯卷积模型的问题,比如捕获长距离依赖关系的困难。为了评估我们的模型和现有卷积模型的性能,我们使用红外图像乳腺数据集对各种编码器-解码器模型进行了训练。利用9个光谱带进行分割的INSTRAS取得了0.9788的优异分数,突出了其相对于纯卷积模型的卓越能力。这些实验结果证明了INSTRAS在红外成像方面先进且改进的分割能力。