Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy.
BMC Med Imaging. 2023 Feb 11;23(1):32. doi: 10.1186/s12880-023-00974-y.
Contouring of anatomical regions is a crucial step in the medical workflow and is both time-consuming and prone to intra- and inter-observer variability. This study compares different strategies for automatic segmentation of the prostate in T2-weighted MRIs.
This study included 100 patients diagnosed with prostate adenocarcinoma who had undergone multi-parametric MRI and prostatectomy. From the T2-weighted MR images, ground truth segmentation masks were established by consensus from two expert radiologists. The prostate was then automatically contoured with six different methods: (1) a multi-atlas algorithm, (2) a proprietary algorithm in the Syngo.Via medical imaging software, and four deep learning models: (3) a V-net trained from scratch, (4) a pre-trained 2D U-net, (5) a GAN extension of the 2D U-net, and (6) a segmentation-adapted EfficientDet architecture. The resulting segmentations were compared and scored against the ground truth masks with one 70/30 and one 50/50 train/test data split. We also analyzed the association between segmentation performance and clinical variables.
The best performing method was the adapted EfficientDet (model 6), achieving a mean Dice coefficient of 0.914, a mean absolute volume difference of 5.9%, a mean surface distance (MSD) of 1.93 pixels, and a mean 95th percentile Hausdorff distance of 3.77 pixels. The deep learning models were less prone to serious errors (0.854 minimum Dice and 4.02 maximum MSD), and no significant relationship was found between segmentation performance and clinical variables.
Deep learning-based segmentation techniques can consistently achieve Dice coefficients of 0.9 or above with as few as 50 training patients, regardless of architectural archetype. The atlas-based and Syngo.via methods found in commercial clinical software performed significantly worse (0.855[Formula: see text]0.887 Dice).
解剖区域的轮廓勾画是医学工作流程中的关键步骤,既耗时又容易受到观察者内部和观察者之间的变异性的影响。本研究比较了不同的策略,用于在 T2 加权 MRI 中自动分割前列腺。
这项研究包括 100 名经多参数 MRI 和前列腺切除术诊断为前列腺腺癌的患者。从 T2 加权 MRI 图像中,由两位专家放射科医生达成共识建立了地面真实分割掩模。然后,使用六种不同的方法自动勾画前列腺:(1)多图谱算法,(2)Syngo.Via 医学成像软件中的专有的算法,以及四个深度学习模型:(3)从头开始训练的 V-net,(4)预训练的 2D U-net,(5)2D U-net 的 GAN 扩展,和(6)分割适应的 EfficientDet 架构。将得到的分割结果与地面真实掩模进行比较,并根据 70/30 和 50/50 的训练/测试数据拆分进行评分。我们还分析了分割性能与临床变量之间的关系。
表现最好的方法是自适应 EfficientDet(模型 6),达到了 0.914 的平均 Dice 系数,5.9%的平均绝对体积差异,1.93 个像素的平均表面距离(MSD)和 3.77 个像素的平均 95%Hausdorff 距离。深度学习模型不太容易出现严重错误(最小 Dice 为 0.854,最大 MSD 为 4.02),并且分割性能与临床变量之间没有发现显著关系。
基于深度学习的分割技术可以在 50 名训练患者的情况下始终达到 0.9 或更高的 Dice 系数,而与体系结构原型无关。商业临床软件中的基于图谱和 Syngo.via 方法的性能明显更差(0.855[公式:见文本]0.887 Dice)。