Suppr超能文献

MRI 图像标准化技术对前列腺癌放射组学的影响。

Effects of MRI image normalization techniques in prostate cancer radiomics.

机构信息

Division of Radiotherapy, European Institute of Oncology IRCCS, via Ripamonti 435, Milan, Italy.

Department of Experimental Oncology, European Institute of Oncology IRCCS, via Ripamonti 435, Milan, Italy.

出版信息

Phys Med. 2020 Mar;71:7-13. doi: 10.1016/j.ejmp.2020.02.007. Epub 2020 Feb 18.

Abstract

The variance in intensities of MRI scans is a fundamental impediment for quantitative MRI analysis. Intensity values are not only highly dependent on acquisition parameters, but also on the subject and body region being scanned. This warrants the need for image normalization techniques to ensure that intensity values are consistent within tissues across different subjects and visits. Many intensity normalization methods have been developed and proven successful for the analysis of brain pathologies, but evaluation of these methods for images of the prostate region is lagging. In this paper, we compare four different normalization methods on 49 T2-w scans of prostate cancer patients: 1) the well-established histogram normalization, 2) the generalized scale normalization, 3) an extension of generalized scale normalization called generalized ball-scale normalization, and 4) a custom normalization based on healthy prostate tissue intensities. The methods are compared qualitatively and quantitatively in terms of behaviors of intensity distributions as well as impact on radiomic features. Our findings suggest that normalization based on prior knowledge of the healthy prostate tissue intensities may be the most effective way of acquiring the desired properties of normalized images. In addition, the histogram normalization method outperform the generalized scale and generalized ball-scale methods which have proven superior for other body regions.

摘要

MRI 扫描强度的变化是定量 MRI 分析的一个基本障碍。强度值不仅高度依赖于采集参数,还依赖于被扫描的对象和身体部位。这就需要图像归一化技术来确保不同对象和不同检查的组织内的强度值是一致的。已经开发了许多强度归一化方法,并已成功应用于脑病理学分析,但对前列腺区域图像的这些方法的评估还比较滞后。在本文中,我们比较了四种不同的归一化方法在 49 例前列腺癌患者的 T2 加权扫描中的应用:1)成熟的直方图归一化,2)广义尺度归一化,3)广义尺度归一化的扩展,称为广义球尺度归一化,以及 4)基于健康前列腺组织强度的定制归一化。这些方法在强度分布的行为以及对放射组学特征的影响方面进行了定性和定量的比较。我们的研究结果表明,基于健康前列腺组织强度的先验知识的归一化可能是获取归一化图像所需特性的最有效方法。此外,直方图归一化方法优于广义尺度和广义球尺度方法,这些方法已被证明在其他身体部位具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验