Gündoğdu Hasan, Panç Kemal, Sekmen Sümeyye, Er Hüseyin, Gürün Enes
Samsun University, Samsun, Turkey.
Karakoçan State Hospital, Elazig, Turkey.
Abdom Radiol (NY). 2025 May;50(5):2221-2231. doi: 10.1007/s00261-024-04667-0. Epub 2024 Nov 15.
Bone metastasis is a critical complication in prostate cancer, significantly impacting patient prognosis and quality of life. This study aims to enhance bone metastasis prediction using machine learning (ML) techniques by integrating dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion features, International Society of Urological Pathology (ISUP) grade, and prostate-specific antigen (PSA) density.
A retrospective analysis was conducted on 122 patients with histopathologically confirmed prostate cancer who underwent multiparametric prostate magnetic resonance imaging (mpMRI). Quantitative mpMRI features, PSA density, and ISUP grades were extracted and normalized. The dataset was balanced using oversampling and divided into training (70%) and test (30%) sets. Various ML models were developed and evaluated using area under the curve (AUC) metrics.
Bone metastases were present in 26 patients (21.3%) at diagnosis. IAUGC and MaxSlope showed a statistically significant association with bone metastasis (p = 0.035, p = 0.050 respectively). The optimal PSA density cut-off value of 0.24 yielded a sensitivity of 0.88, specificity of 0.60, and AUC of 0.77. Machine learning models were developed using the dataset created with IAUGC, MaxSlope, ISUP grade, and PSA density values. Among the ML models, XGBoost demonstrated superior performance with validation and test AUCs of 91.5% and 92.6%, respectively, along with high precision (93.3%) and recall (93.1%).
Integrating quantitative mpMRI features, ISUP grade, and PSA density through machine learning algorithms, particularly XGBoost, significantly improves the accuracy of bone metastasis prediction in prostate cancer patients. This approach can potentially reduce the need for additional imaging modalities and associated radiation exposure.
骨转移是前列腺癌的一种关键并发症,对患者的预后和生活质量有重大影响。本研究旨在通过整合动态对比增强磁共振成像(DCE-MRI)灌注特征、国际泌尿病理学会(ISUP)分级和前列腺特异性抗原(PSA)密度,利用机器学习(ML)技术提高骨转移预测能力。
对122例经组织病理学证实的前列腺癌患者进行回顾性分析,这些患者均接受了多参数前列腺磁共振成像(mpMRI)检查。提取定量mpMRI特征、PSA密度和ISUP分级并进行标准化处理。使用过采样方法对数据集进行平衡处理,然后将其分为训练集(70%)和测试集(30%)。开发了各种ML模型,并使用曲线下面积(AUC)指标进行评估。
诊断时26例患者(21.3%)存在骨转移。初始增强率(IAUGC)和最大斜率与骨转移存在统计学显著关联(分别为p = 0.035,p = 0.050)。最佳PSA密度临界值为0.24,灵敏度为0.88,特异性为0.60,AUC为0.77。利用由IAUGC、最大斜率、ISUP分级和PSA密度值创建的数据集开发了机器学习模型。在ML模型中,XGBoost表现出卓越性能,验证集和测试集的AUC分别为91.5%和92.6%,同时具有高精度(93.3%)和召回率(93.1%)。
通过机器学习算法,特别是XGBoost,整合定量mpMRI特征、ISUP分级和PSA密度,可显著提高前列腺癌患者骨转移预测的准确性。这种方法可能会减少对额外成像方式的需求以及相关的辐射暴露。