Kim Minjun, Jang Joon Ho, Nam Myeong Gyun, Yoo Pil J
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
Adv Mater. 2024 Jul 30:e2406251. doi: 10.1002/adma.202406251.
With the escalating global demand for electric vehicles and sustainable energy solutions, increasing focus is placed on developing electrochemical systems that offer fast charging and high-power output, primarily governed by mass transport. Accordingly, porous carbons have emerged as highly promising electrochemically active or supporting materials due to expansive surface areas, tunable pore structures, and superior electrical conductivity, accelerating surface reaction. Yet, while substantial research has been devoted to crafting various porous carbons to increase specific surface areas, the optimal utilization of the surfaces remains underexplored. This review emphasizes the critical role of the fluid dynamics within multiscale porous carbonaceous electrodes, leading to substantially enhanced pore utilization in electrochemical systems. It elaborates on strategies of using sacrificial templates for incorporating meso/macropores into microporous carbon matrix, while exploiting the unique properties of polyphenol moieties such as sustainable carbons derived from biomass, inherent adhesive/cohesive interactions with template materials, and facile complexation capabilities with diverse materials, thereby enabling adaptive structural modulations. Furthermore, it explores how multiscale pore configurations influence pore-utilization efficiency, demonstrating advantages of incorporating multiscale pores. Finally, synergistic impact on the high-power electrochemical systems is examined, attributed to improved fluid-dynamic behavior within the carbonaceous frameworks, providing insights for advancing next-generation high-power electrochemical applications.
随着全球对电动汽车和可持续能源解决方案的需求不断升级,人们越来越关注开发能够实现快速充电和高功率输出的电化学系统,这主要受传质过程的控制。因此,多孔碳由于具有较大的表面积、可调节的孔结构和优异的导电性,能够加速表面反应,已成为极具潜力的电化学活性材料或支撑材料。然而,尽管大量研究致力于制备各种多孔碳以增加比表面积,但对其表面的最佳利用仍未得到充分探索。本综述强调了多尺度多孔碳质电极内流体动力学的关键作用,这可显著提高电化学系统中的孔利用率。它详细阐述了使用牺牲模板将介孔/大孔引入微孔碳基质的策略,同时利用多酚部分的独特性质,如源自生物质的可持续碳、与模板材料固有的粘附/内聚相互作用以及与多种材料的 facile 络合能力,从而实现适应性结构调制。此外,还探讨了多尺度孔结构如何影响孔利用效率,展示了引入多尺度孔的优势。最后,研究了对高功率电化学系统的协同影响,这归因于碳质骨架内改善的流体动力学行为,为推进下一代高功率电化学应用提供了见解。