School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, China.
Beijing Computational Science Research Center, Beijing, 100193, China.
Angew Chem Int Ed Engl. 2023 Apr 3;62(15):e202217428. doi: 10.1002/anie.202217428. Epub 2023 Feb 28.
Catalytic strategies based on main group metals are significantly less advanced than those of transition metal catalysis, leaving untapped areas of potentially fruitful research. We here demonstrate an effective approach for the modulation of Bi 6p energy levels during the construction of atomically dispersed clusters of amorphous BiO . Bi oxidation state is proposed to strongly affects the nitrogen fixation activity, with the half-occupied p orbitals of the Bi ions being highly efficient toward electron injection into the inert N molecule. With sufficient catalytic sites to adsorb and activate N , the bonding between N and catalyst is able to be in situ identified. The catalyst shows an outstanding Faraday efficiency (≈30 %) and high yield (≈113 μg h mg ) in NH production, outperforming most of the existing catalysts in aqueous solution. These results lay the basis for developing the potential of p-block elements for catalysis of multi-electron reactions.
基于主族金属的催化策略远远落后于过渡金属催化,留下了大量潜在的富有成效的研究领域。在这里,我们展示了一种在原子分散的无定形 BiO 簇的构建过程中调节 Bi 6p 能级的有效方法。Bi 的氧化态被认为强烈影响氮固定活性,Bi 离子的半占据 p 轨道对于向惰性 N 分子注入电子非常有效。具有足够的催化位点来吸附和激活 N ,催化剂能够原位识别 N 与催化剂之间的键合。该催化剂在 NH 3 生产中表现出出色的法拉第效率(≈30%)和高产率(≈113μg h -1 mg -1 ),优于大多数在水溶液中的现有催化剂。这些结果为开发 p 区元素在多电子反应催化中的潜力奠定了基础。