Suppr超能文献

人类肺泡巨噬细胞在感染期间的代谢受到损害。

Human alveolar macrophage metabolism is compromised during infection.

机构信息

The Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology and.

McGill International TB Centre, Montreal, QC, Canada.

出版信息

Front Immunol. 2023 Jan 26;13:1044592. doi: 10.3389/fimmu.2022.1044592. eCollection 2022.

Abstract

Pulmonary macrophages have two distinct ontogenies: long-lived embryonically-seeded alveolar macrophages (AM) and bone marrow-derived macrophages (BMDM). Here, we show that after infection with a virulent strain of (H37Rv), primary murine AM exhibit a unique transcriptomic signature characterized by metabolic reprogramming distinct from conventional BMDM. In contrast to BMDM, AM failed to shift from oxidative phosphorylation (OXPHOS) to glycolysis and consequently were unable to control infection with an avirulent strain (H37Ra). Importantly, healthy human AM infected with H37Ra equally demonstrated diminished energetics, recapitulating our observation in the murine model system. However, the results from seahorse showed that the shift towards glycolysis in both AM and BMDM was inhibited by H37Rv. We further demonstrated that pharmacological (e.g. metformin or the iron chelator desferrioxamine) reprogramming of AM towards glycolysis reduced necrosis and enhanced AM capacity to control H37Rv growth. Together, our results indicate that the unique bioenergetics of AM renders these cells a perfect target for survival and that metabolic reprogramming may be a viable host targeted therapy against TB.

摘要

肺巨噬细胞有两种不同的发生途径

长寿的胚胎源性肺泡巨噬细胞(AM)和骨髓源性巨噬细胞(BMDM)。在这里,我们表明,在感染了一种毒力株(H37Rv)后,原代小鼠 AM 表现出一种独特的转录组特征,其代谢重编程与传统的 BMDM 不同。与 BMDM 不同,AM 未能从氧化磷酸化(OXPHOS)转向糖酵解,因此无法控制感染弱毒株(H37Ra)。重要的是,感染了 H37Ra 的健康人 AM 同样表现出能量代谢的减少,这与我们在小鼠模型系统中的观察结果一致。然而, Seahorse 的结果表明,H37Rv 抑制了 AM 和 BMDM 向糖酵解的转变。我们进一步证明,通过药理学方法(如二甲双胍或铁螯合剂去铁胺)将 AM 向糖酵解重编程,可减少坏死并增强 AM 控制 H37Rv 生长的能力。总之,我们的研究结果表明,AM 独特的生物能量学使这些细胞成为 生存的理想靶点,代谢重编程可能是一种针对结核病的可行的宿主靶向治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c9/9910175/aaee6b10d61e/fimmu-13-1044592-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验