Lafuente Miguel, López Francisco Javier, Mateo Pedro Mariano, Cebrián Ana Carmen, Asín Jesús, Moler José Antonio, Borque-Fernando Ángel, Esteban Luis Mariano, Pérez-Palomares Ana, Sanz Gerardo
Department of Statistical Methods, Universidad de Zaragoza, C. Pedro Cerbuna 12, 50009 Zaragoza, Spain.
Institute for Biocomputation and Physics of Complex Systems-BIFI, Universidad de Zaragoza. C. de Mariano Esquillor Gómez, Edificio I+D, 50018 Zaragoza, Spain.
Heliyon. 2023 Feb;9(2):e13545. doi: 10.1016/j.heliyon.2023.e13545. Epub 2023 Feb 5.
This study aims to build a multistate model and describe a predictive tool for estimating the daily number of intensive care unit (ICU) and hospital beds occupied by patients with coronavirus 2019 disease (COVID-19).
The estimation is based on the simulation of patient trajectories using a multistate model where the transition probabilities between states are estimated via competing risks and cure models. The input to the tool includes the dates of COVID-19 diagnosis, admission to hospital, admission to ICU, discharge from ICU and discharge from hospital or death of positive cases from a selected initial date to the current moment. Our tool is validated using 98,496 cases positive for severe acute respiratory coronavirus 2 extracted from the Aragón Healthcare Records Database from July 1, 2020 to February 28, 2021.
The tool demonstrates good performance for the 7- and 14-days forecasts using the actual positive cases, and shows good accuracy among three scenarios corresponding to different stages of the pandemic: 1) up-scenario, 2) peak-scenario and 3) down-scenario. Long term predictions (two months) also show good accuracy, while those using Holt-Winters positive case estimates revealed acceptable accuracy to day 14 onwards, with relative errors of 8.8%.
In the era of the COVID-19 pandemic, hospitals must evolve in a dynamic way. Our prediction tool is designed to predict hospital occupancy to improve healthcare resource management without information about clinical history of patients.
Our easy-to-use and freely accessible tool (https://github.com/peterman65) shows good performance and accuracy for forecasting the daily number of hospital and ICU beds required for patients with COVID-19.
本研究旨在构建一个多状态模型,并描述一种预测工具,用于估计2019冠状病毒病(COVID-19)患者占用的重症监护病房(ICU)和医院病床的每日数量。
该估计基于使用多状态模型对患者轨迹的模拟,其中状态之间的转移概率通过竞争风险和治愈模型进行估计。该工具的输入包括从选定的初始日期到当前时刻的COVID-19诊断日期、入院日期、入住ICU日期、从ICU出院日期、出院日期或阳性病例的死亡日期。我们的工具使用从2020年7月1日至2021年2月28日从阿拉贡医疗记录数据库中提取的98496例严重急性呼吸冠状病毒2阳性病例进行验证。
该工具在使用实际阳性病例进行7天和14天预测时表现良好,并且在对应于大流行不同阶段的三种情景中显示出良好的准确性:1)上升情景,2)峰值情景和3)下降情景。长期预测(两个月)也显示出良好的准确性,而使用霍尔特-温特斯阳性病例估计的预测在第14天之后显示出可接受的准确性,相对误差为8.8%。
在COVID-19大流行时代,医院必须以动态方式发展。我们的预测工具旨在预测医院床位占用情况,以改善医疗资源管理,而无需患者的临床病史信息。
我们易于使用且可免费获取的工具(https://github.com/peterman65)在预测COVID-19患者所需的医院和ICU病床每日数量方面表现良好且准确性高。