Suppr超能文献

一种用于预测新冠肺炎患者医院和重症监护病房占用情况的多状态模型及其独立工具。

A multistate model and its standalone tool to predict hospital and ICU occupancy by patients with COVID-19.

作者信息

Lafuente Miguel, López Francisco Javier, Mateo Pedro Mariano, Cebrián Ana Carmen, Asín Jesús, Moler José Antonio, Borque-Fernando Ángel, Esteban Luis Mariano, Pérez-Palomares Ana, Sanz Gerardo

机构信息

Department of Statistical Methods, Universidad de Zaragoza, C. Pedro Cerbuna 12, 50009 Zaragoza, Spain.

Institute for Biocomputation and Physics of Complex Systems-BIFI, Universidad de Zaragoza. C. de Mariano Esquillor Gómez, Edificio I+D, 50018 Zaragoza, Spain.

出版信息

Heliyon. 2023 Feb;9(2):e13545. doi: 10.1016/j.heliyon.2023.e13545. Epub 2023 Feb 5.

Abstract

OBJECTIVE

This study aims to build a multistate model and describe a predictive tool for estimating the daily number of intensive care unit (ICU) and hospital beds occupied by patients with coronavirus 2019 disease (COVID-19).

MATERIAL AND METHODS

The estimation is based on the simulation of patient trajectories using a multistate model where the transition probabilities between states are estimated via competing risks and cure models. The input to the tool includes the dates of COVID-19 diagnosis, admission to hospital, admission to ICU, discharge from ICU and discharge from hospital or death of positive cases from a selected initial date to the current moment. Our tool is validated using 98,496 cases positive for severe acute respiratory coronavirus 2 extracted from the Aragón Healthcare Records Database from July 1, 2020 to February 28, 2021.

RESULTS

The tool demonstrates good performance for the 7- and 14-days forecasts using the actual positive cases, and shows good accuracy among three scenarios corresponding to different stages of the pandemic: 1) up-scenario, 2) peak-scenario and 3) down-scenario. Long term predictions (two months) also show good accuracy, while those using Holt-Winters positive case estimates revealed acceptable accuracy to day 14 onwards, with relative errors of 8.8%.

DISCUSSION

In the era of the COVID-19 pandemic, hospitals must evolve in a dynamic way. Our prediction tool is designed to predict hospital occupancy to improve healthcare resource management without information about clinical history of patients.

CONCLUSIONS

Our easy-to-use and freely accessible tool (https://github.com/peterman65) shows good performance and accuracy for forecasting the daily number of hospital and ICU beds required for patients with COVID-19.

摘要

目的

本研究旨在构建一个多状态模型,并描述一种预测工具,用于估计2019冠状病毒病(COVID-19)患者占用的重症监护病房(ICU)和医院病床的每日数量。

材料与方法

该估计基于使用多状态模型对患者轨迹的模拟,其中状态之间的转移概率通过竞争风险和治愈模型进行估计。该工具的输入包括从选定的初始日期到当前时刻的COVID-19诊断日期、入院日期、入住ICU日期、从ICU出院日期、出院日期或阳性病例的死亡日期。我们的工具使用从2020年7月1日至2021年2月28日从阿拉贡医疗记录数据库中提取的98496例严重急性呼吸冠状病毒2阳性病例进行验证。

结果

该工具在使用实际阳性病例进行7天和14天预测时表现良好,并且在对应于大流行不同阶段的三种情景中显示出良好的准确性:1)上升情景,2)峰值情景和3)下降情景。长期预测(两个月)也显示出良好的准确性,而使用霍尔特-温特斯阳性病例估计的预测在第14天之后显示出可接受的准确性,相对误差为8.8%。

讨论

在COVID-19大流行时代,医院必须以动态方式发展。我们的预测工具旨在预测医院床位占用情况,以改善医疗资源管理,而无需患者的临床病史信息。

结论

我们易于使用且可免费获取的工具(https://github.com/peterman65)在预测COVID-19患者所需的医院和ICU病床每日数量方面表现良好且准确性高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afab/9929444/af74b915f0ef/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验