Suppr超能文献

一种新颖的基于证据的住院和住院时间预测工具:来自纽约市 COVID-19 患者的见解。

A novel evidence-based predictor tool for hospitalization and length of stay: insights from COVID-19 patients in New York city.

机构信息

Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Morningside and Mount Sinai West Hospitals, New York, NY, USA.

Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Intern Emerg Med. 2022 Oct;17(7):1879-1889. doi: 10.1007/s11739-022-03014-9. Epub 2022 Jun 30.

Abstract

Predictive models for key outcomes of coronavirus disease 2019 (COVID-19) can optimize resource utilization and patient outcome. We aimed to design and internally validate a web-based calculator predictive of hospitalization and length of stay (LOS) in a large cohort of COVID-19-positive patients presenting to the Emergency Department (ED) in a New York City health system. The study cohort consisted of consecutive adult (> 18 years) patients presenting to the ED of Mount Sinai Health System hospitals between March 2020 and April 2020, diagnosed with COVID-19. Logistic regression was utilized to construct predictive models for hospitalization and prolonged (> 3 days) LOS. Discrimination was evaluated using area under the receiver operating curve (AUC). Internal validation with bootstrapping was performed, and a web-based calculator was implemented. From 5859 patients, 65% were hospitalized. Independent predictors of hospitalization and extended LOS included older age, chronic kidney disease, elevated maximum temperature, and low minimum oxygen saturation (p < 0.001). Additional predictors of hospitalization included male sex, chronic obstructive pulmonary disease, hypertension, and diabetes. AUCs of 0.881 and 0.770 were achieved for hospitalization and LOS, respectively. Elevated levels of CRP, creatinine, and ferritin were key determinants of hospitalization and LOS (p < 0.05). A calculator was made available under the following URL: https://covid19-outcome-prediction.shinyapps.io/COVID19_Hospitalization_Calculator/ . This study yielded internally validated models that predict hospitalization risk in COVID-19-positive patients, which can be used to optimize resource allocation. Predictors of hospitalization and extended LOS included older age, CKD, fever, oxygen desaturation, elevated C-reactive protein, creatinine, and ferritin.

摘要

预测 2019 冠状病毒病(COVID-19)关键结局的模型可以优化资源利用和患者结局。我们旨在设计并内部验证一个基于网络的计算器,用于预测在纽约市医疗系统的急诊科就诊的大量 COVID-19 阳性患者的住院和住院时间(LOS)。该研究队列包括 2020 年 3 月至 4 月期间连续出现于西奈山健康系统医院急诊科的成年(>18 岁)COVID-19 患者。利用逻辑回归构建住院和延长(>3 天) LOS 的预测模型。使用接收者操作曲线下面积(AUC)评估区分度。采用 bootstrap 进行内部验证,并实施了一个基于网络的计算器。从 5859 例患者中,65%住院。住院和延长 LOS 的独立预测因素包括年龄较大、慢性肾脏病、最高体温升高和最低氧饱和度降低(p<0.001)。住院的其他预测因素包括男性、慢性阻塞性肺疾病、高血压和糖尿病。住院和 LOS 的 AUC 分别为 0.881 和 0.770。CRP、肌酐和铁蛋白水平升高是住院和 LOS 的关键决定因素(p<0.05)。计算器可在以下 URL 获得:https://covid19-outcome-prediction.shinyapps.io/COVID19_Hospitalization_Calculator/ 。本研究产生了内部验证的模型,可以预测 COVID-19 阳性患者的住院风险,从而优化资源分配。住院和延长 LOS 的预测因素包括年龄较大、CKD、发热、氧饱和度降低、C 反应蛋白、肌酐和铁蛋白升高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/424c/9245868/c08c1b848032/11739_2022_3014_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验