Palermo Marcelo Benedeti, Policarpo Lucas Micol, Costa Cristiano André da, Righi Rodrigo da Rosa
Software Innovation Laboratory-SOFTWARELAB, Programa de Pós-Graduação em Computação Aplicada, Universidade do Vale do Rio dos Sinos, Av. Unisinos 950, São Leopoldo, RS 93022-750 Brazil.
Netw Model Anal Health Inform Bioinform. 2022;11(1):40. doi: 10.1007/s13721-022-00384-0. Epub 2022 Oct 11.
This systematic review aims to study and classify machine learning models that predict pandemics' evolution within affected regions or countries. The advantage of this systematic review is that it allows the health authorities to decide what prediction model fits best depending upon the region's criticality and optimize hospitals' approaches to preparing and anticipating patient care. We searched ACM Digital Library, Biomed Central, BioRxiv+MedRxiv, BMJ, Computers and Applied Sciences, IEEEXplore, JMIR Medical Informatics, Medline Daily Updates, Nature, Oxford Academic, PubMed, Sage Online, ScienceDirect, Scopus, SpringerLink, Web of Science, and Wiley Online Library between 1 January 2020 and 31 July 2022. We divided the interventions into similarities between cumulative COVID-19 real cases and machine learning prediction models' ability to track pandemics trending. We included 45 studies that rated low to high risk of bias. The standardized mean differences (SMD) for the two groups were 0.18, 95% CI, with interval of [0.01, 0.35], =0, and value=0.04. We built a taxonomic analysis of the included studies and determined two domains: pandemics trending prediction models and geolocation tracking models. We performed the meta-analysis and data synthesis and got low publication bias because of missing results. The level of certainty varied from very low to high. By submitting the 45 studies on the risk of bias, the levels of certainty, the summary of findings, and the statistical analysis via the forest and funnel plots assessments, we could determine the satisfactory statistical significance homogeneity across the included studies to simulate the progress of the pandemics and help the healthcare authorities to take preventive decisions.
本系统评价旨在研究和分类预测受影响地区或国家内大流行演变的机器学习模型。该系统评价的优势在于,它能让卫生当局根据地区的危急程度决定哪种预测模型最合适,并优化医院准备和预期患者护理的方法。我们在2020年1月1日至2022年7月31日期间检索了ACM数字图书馆、生物医学中心、BioRxiv+MedRxiv、《英国医学杂志》、计算机与应用科学、IEEE Xplore、JMIR医学信息学、Medline每日更新、《自然》、牛津学术、PubMed、Sage在线、ScienceDirect、Scopus、SpringerLink、科学引文索引和Wiley在线图书馆。我们将干预措施分为累计新冠实际病例之间的相似性以及机器学习预测模型跟踪大流行趋势的能力。我们纳入了45项偏倚风险从低到高的研究。两组的标准化均数差(SMD)为0.18,95%置信区间,区间为[0.01, 0.35],I² = 0,P值 = 0.04。我们对纳入的研究进行了分类分析,确定了两个领域:大流行趋势预测模型和地理位置跟踪模型。我们进行了荟萃分析和数据综合,由于结果缺失,发表偏倚较低。确定性水平从非常低到高不等。通过提交关于偏倚风险、确定性水平以及通过森林图和漏斗图评估进行的统计分析的45项研究,我们可以确定纳入研究之间令人满意的统计显著性同质性,以模拟大流行的进展,并帮助医疗当局做出预防决策。