Suppr超能文献

基于递归特征消除的开放性神经管缺陷生物标志物识别

Recursive Feature Elimination-based Biomarker Identification for Open Neural Tube Defects.

作者信息

Karthik Kadhir Velu, Rajalingam Aruna, Shivashankar Mallaiah, Ganjiwale Anjali

机构信息

Department of Life Science, Bangalore University, Bangalore, India.

出版信息

Curr Genomics. 2022 Jul 5;23(3):195-206. doi: 10.2174/1389202923666220511162038.

Abstract

Open spina bifida (myelomeningocele) is the result of the failure of spinal cord closing completely and is the second most common and severe birth defect. Open neural tube defects are multifactorial, and the exact molecular mechanism of the pathogenesis is not clear due to disease complexity for which prenatal treatment options remain limited worldwide. Artificial intelligence techniques like machine learning tools have been increasingly used in precision diagnosis. The primary objective of this study is to identify key genes for open neural tube defects using a machine learning approach that provides additional information about myelomeningocele in order to obtain a more accurate diagnosis. Our study reports differential gene expression analysis from multiple datasets (GSE4182 and GSE101141) of amniotic fluid samples with open neural tube defects. The sample outliers in the datasets were detected using principal component analysis (PCA). We report a combination of the differential gene expression analysis with recursive feature elimination (RFE), a machine learning approach to get 4 key genes for open neural tube defects. The features selected were validated using five binary classifiers for diseased and healthy samples: Logistic Regression (LR), Decision tree classifier (DT), Support Vector Machine (SVM), Random Forest classifier (RF), and K-nearest neighbour (KNN) with 5-fold cross-validation. Growth Associated Protein 43 (GAP43), Glial fibrillary acidic protein (GFAP), Repetin (RPTN), and CD44 are the important genes identified in the study. These genes are known to be involved in axon growth, astrocyte differentiation in the central nervous system, post-traumatic brain repair, neuroinflammation, and inflammation-linked neuronal injuries. These key genes represent a promising tool for further studies in the diagnosis and early detection of open neural tube defects. These key biomarkers help in the diagnosis and early detection of open neural tube defects, thus evaluating the progress and seriousness in diseases condition. This study strengthens previous literature sources of confirming these biomarkers linked with open NTD's. Thus, among other prenatal treatment options present until now, these biomarkers help in the early detection of open neural tube defects, which provides success in both treatment and prevention of these defects in the advanced stage.

摘要

开放性脊柱裂(脊髓脊膜膨出)是脊髓未能完全闭合的结果,是第二常见且严重的出生缺陷。开放性神经管缺陷是多因素导致的,由于疾病复杂性,其发病的确切分子机制尚不清楚,全球范围内的产前治疗选择仍然有限。机器学习工具等人工智能技术已越来越多地用于精准诊断。本研究的主要目的是使用机器学习方法识别开放性神经管缺陷的关键基因,该方法可提供有关脊髓脊膜膨出的更多信息,以获得更准确的诊断。我们的研究报告了来自开放性神经管缺陷羊水样本的多个数据集(GSE4182和GSE101141)的差异基因表达分析。使用主成分分析(PCA)检测数据集中的样本异常值。我们报告了差异基因表达分析与递归特征消除(RFE)的结合,这是一种机器学习方法,可获得4个开放性神经管缺陷的关键基因。使用针对患病和健康样本的五个二元分类器对所选特征进行验证:逻辑回归(LR)、决策树分类器(DT)、支持向量机(SVM)、随机森林分类器(RF)和K近邻(KNN),采用五折交叉验证。生长相关蛋白43(GAP43)、胶质纤维酸性蛋白(GFAP)、Repetin(RPTN)和CD44是该研究中确定的重要基因。已知这些基因参与轴突生长、中枢神经系统中的星形胶质细胞分化、创伤后脑修复、神经炎症以及炎症相关的神经元损伤。这些关键基因代表了进一步研究开放性神经管缺陷诊断和早期检测的有前景的工具。这些关键生物标志物有助于开放性神经管缺陷的诊断和早期检测,从而评估疾病状况的进展和严重程度。本研究强化了先前文献中关于这些与开放性神经管缺陷相关生物标志物的来源。因此,在目前现有的其他产前治疗选择中,这些生物标志物有助于开放性神经管缺陷的早期检测,这在晚期这些缺陷的治疗和预防方面都取得了成功。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1434/9878829/150d16f79bf1/CG-23-195_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验