Suppr超能文献

基于递归特征消除方法的分类算法通过分析声学信号自动早期检测帕金森病

Automatic and Early Detection of Parkinson's Disease by Analyzing Acoustic Signals Using Classification Algorithms Based on Recursive Feature Elimination Method.

作者信息

Alalayah Khaled M, Senan Ebrahim Mohammed, Atlam Hany F, Ahmed Ibrahim Abdulrab, Shatnawi Hamzeh Salameh Ahmad

机构信息

Department of Computer Science, Faculty of Science and Arts, Najran University, Sharurah 68341, Saudi Arabia.

Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana'a, Yemen.

出版信息

Diagnostics (Basel). 2023 May 31;13(11):1924. doi: 10.3390/diagnostics13111924.

Abstract

Parkinson's disease (PD) is a neurodegenerative condition generated by the dysfunction of brain cells and their 60-80% inability to produce dopamine, an organic chemical responsible for controlling a person's movement. This condition causes PD symptoms to appear. Diagnosis involves many physical and psychological tests and specialist examinations of the patient's nervous system, which causes several issues. The methodology method of early diagnosis of PD is based on analysing voice disorders. This method extracts a set of features from a recording of the person's voice. Then machine-learning (ML) methods are used to analyse and diagnose the recorded voice to distinguish Parkinson's cases from healthy ones. This paper proposes novel techniques to optimize the techniques for early diagnosis of PD by evaluating selected features and hyperparameter tuning of ML algorithms for diagnosing PD based on voice disorders. The dataset was balanced by the synthetic minority oversampling technique (SMOTE) and features were arranged according to their contribution to the target characteristic by the recursive feature elimination (RFE) algorithm. We applied two algorithms, t-distributed stochastic neighbour embedding (t-SNE) and principal component analysis (PCA), to reduce the dimensions of the dataset. Both t-SNE and PCA finally fed the resulting features into the classifiers support-vector machine (SVM), K-nearest neighbours (KNN), decision tree (DT), random forest (RF), and multilayer perception (MLP). Experimental results proved that the proposed techniques were superior to existing studies in which RF with the t-SNE algorithm yielded an accuracy of 97%, precision of 96.50%, recall of 94%, and F1-score of 95%. In addition, MLP with the PCA algorithm yielded an accuracy of 98%, precision of 97.66%, recall of 96%, and F1-score of 96.66%.

摘要

帕金森病(PD)是一种由脑细胞功能障碍引起的神经退行性疾病,其60 - 80%的脑细胞无法产生多巴胺,多巴胺是一种负责控制人体运动的有机化学物质。这种情况导致帕金森病症状出现。诊断涉及多项身体和心理测试以及对患者神经系统的专科检查,这引发了一些问题。帕金森病的早期诊断方法基于对语音障碍的分析。该方法从人的语音记录中提取一组特征。然后使用机器学习(ML)方法对记录的语音进行分析和诊断,以区分帕金森病病例和健康病例。本文提出了新颖的技术,通过评估选定特征和对基于语音障碍诊断帕金森病的ML算法进行超参数调整,来优化帕金森病的早期诊断技术。数据集通过合成少数过采样技术(SMOTE)进行平衡,并且通过递归特征消除(RFE)算法根据特征对目标特征的贡献进行排列。我们应用了两种算法,t分布随机邻域嵌入(t-SNE)和主成分分析(PCA),来降低数据集的维度。t-SNE和PCA最终都将所得特征输入到支持向量机(SVM)、K近邻(KNN)、决策树(DT)、随机森林(RF)和多层感知器(MLP)等分类器中。实验结果证明,所提出的技术优于现有研究,其中采用t-SNE算法的RF准确率为97%,精确率为96.50%,召回率为94%,F1分数为95%。此外,采用PCA算法的MLP准确率为98%,精确率为97.66%,召回率为96%,F1分数为96.66%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3597/10253064/ae9a2d5ae4bb/diagnostics-13-01924-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验