Suppr超能文献

基于改进雀鹰优化算法优化支持向量机的刀具磨损状态识别

Tool Wear State Identification Based on SVM Optimized by the Improved Northern Goshawk Optimization.

作者信息

Wang Jiaqi, Xiang Zhong, Cheng Xiao, Zhou Ji, Li Wenqi

机构信息

School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.

Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China.

出版信息

Sensors (Basel). 2023 Oct 20;23(20):8591. doi: 10.3390/s23208591.

Abstract

Tool wear condition significantly influences equipment downtime and machining precision, necessitating the exploration of a more accurate tool wear state identification technique. In this paper, the wavelet packet thresholding denoising method is used to process the acquired multi-source signals and extract several signal features. The set of features most relevant to the tool wear state is screened out by the support vector machine recursive feature elimination (SVM-RFE). Utilizing these selected features, we propose a tool wear state identification model, which utilizes an improved northern goshawk optimization (INGO) algorithm to optimize the support vector machine (SVM), hereby referred to as INGO-SVM. The simulation tests reveal that INGO demonstrates superior convergence efficacy and stability. Furthermore, a milling wear experiment confirms that this approach outperforms five other methods in terms of recognition accuracy, achieving a remarkable accuracy rate of 97.9%.

摘要

刀具磨损状态显著影响设备停机时间和加工精度,因此需要探索一种更精确的刀具磨损状态识别技术。本文采用小波包阈值去噪方法对采集到的多源信号进行处理,并提取多个信号特征。通过支持向量机递归特征消除(SVM-RFE)筛选出与刀具磨损状态最相关的特征集。利用这些选定的特征,我们提出了一种刀具磨损状态识别模型,该模型利用改进的苍鹰优化(INGO)算法优化支持向量机(SVM),即INGO-SVM。仿真测试表明,INGO具有优异的收敛效果和稳定性。此外,铣削磨损实验证实,该方法在识别精度方面优于其他五种方法,达到了97.9%的显著准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d5/10610562/b3a8f01f447e/sensors-23-08591-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验