Suppr超能文献

使用结合放射组学和临床生物标志物的机器学习模型预测局部晚期胃癌的新辅助化疗反应。

Predicting neoadjuvant chemotherapy response in locally advanced gastric cancer using a machine learning model combining radiomics and clinical biomarkers.

作者信息

Ling Tong, Zuo Zhichao, Wu Liucheng, Ma Jie, Wang Tingan, Huang Mingwei

机构信息

Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China.

School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan, China.

出版信息

Digit Health. 2025 May 8;11:20552076251341740. doi: 10.1177/20552076251341740. eCollection 2025 Jan-Dec.

Abstract

RATIONALE AND OBJECTIVES

Neoadjuvant chemotherapy (NAC) is a promising therapeutic strategy for managing locally advanced gastric cancer (LAGC), aiming to reduce tumor burden, enhance resection rates, and improve clinical outcomes. Due to variability in patient responses, the objective of this study was to enhance the prediction of NAC tumor regression grade (TRG) in patients with LAGC by integrating radiomic features with clinical biomarkers through machine learning (ML) approaches.

MATERIALS AND METHODS

We analyzed a cohort of 255 patients with LAGC who underwent NAC prior to surgical resection at the Affiliated Cancer Hospital of Guangxi Medical University. Among these patients, 57 (22.4%) were classified as responders (TRG 0-1), and 198 (77.6%) were identified as non-responders (TRG 2-3). The cohort was divided into a training set (n = 178) and a validation set (n = 77) in a 7:3 ratio. Pre-treatment portal venous-phase computed tomography scans were used to extract 1130 radiomic features via the OnekeyAI platform software. Through feature engineering, we generated a radiomics score (rad score) by linearly combining these features. A variety of ML algorithms were applied to integrate the rad score with clinical biomarkers, resulting in the construction of a hybrid model. The model's diagnostic performance was evaluated using receiver operating characteristic curves and the area under the curve (AUC).

RESULTS

Among the ML models tested, the random forest (RF) model performed best when both the rad score and clinical biomarkers were used as input features, leading to our hybrid model development. This hybrid model (AUC = 0.814) outperformed the radiomics (AUC = 0.755) and clinical (AUC = 0.682) models.

CONCLUSION

A RF-based hybrid model was developed by integrating radiomics and clinical biomarkers to predict NAC response in patients with LAGC undergoing surgical resection, providing personalized treatment insights.

摘要

原理与目的

新辅助化疗(NAC)是治疗局部晚期胃癌(LAGC)的一种有前景的治疗策略,旨在减轻肿瘤负荷、提高切除率并改善临床结局。由于患者反应存在差异,本研究的目的是通过机器学习(ML)方法将放射组学特征与临床生物标志物相结合,提高对LAGC患者NAC肿瘤退缩分级(TRG)的预测。

材料与方法

我们分析了广西医科大学附属肿瘤医院255例接受手术切除前NAC的LAGC患者队列。在这些患者中,57例(22.4%)被分类为反应者(TRG 0 - 1),198例(77.6%)被确定为无反应者(TRG 2 - 3)。该队列以7:3的比例分为训练集(n = 178)和验证集(n = 77)。使用治疗前门静脉期计算机断层扫描通过OnekeyAI平台软件提取1130个放射组学特征。通过特征工程,我们通过线性组合这些特征生成了一个放射组学评分(rad评分)。应用多种ML算法将rad评分与临床生物标志物相结合,构建了一个混合模型。使用受试者工作特征曲线和曲线下面积(AUC)评估模型的诊断性能。

结果

在测试的ML模型中,当rad评分和临床生物标志物都用作输入特征时,随机森林(RF)模型表现最佳,从而开发了我们的混合模型。该混合模型(AUC = 0.814)优于放射组学模型(AUC = 0.755)和临床模型(AUC = 0.682)。

结论

通过整合放射组学和临床生物标志物开发了一种基于RF的混合模型,以预测接受手术切除的LAGC患者的NAC反应,提供个性化治疗见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b6/12065980/a0434a669d9e/10.1177_20552076251341740-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验