Suppr超能文献

基于医院的新冠病毒疾病登记系统:设计与实施。哥伦比亚的经验。

Hospital-based COVID-19 registry: Design and implementation. Colombian experience.

作者信息

Rodriguez Sarita, Guzmán Tania M, Tafurt Eric, Beltrán Estefanía, Castro Andrés, Rosso Fernando, Prada Sergio I, Zarama Virginia

机构信息

Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali 760032, Colombia.

Universidad Icesi - Facultad de Ciencias de la Salud Cali, Colombia.

出版信息

MethodsX. 2023;10:102056. doi: 10.1016/j.mex.2023.102056. Epub 2023 Feb 3.

Abstract

Registries are essential to providing valuable clinical and epidemiological decisions. Designing a registry is challenging because it is time-consuming and resource-intensive, particularly in low- and middle-income countries. Here, we described our experience with the rationale, design, and implementation of a hospital-based COVID-19 registry in Cali, Colombia. We designed and implemented a hospital-based registry over a dynamic web-based structure to record all sociodemographic, clinical, and laboratory tests, imaging, treatment, and outcomes of SARS-CoV-2. We included 4458 confirmed COVID-19 cases of 18 years and older from March 2020 to March 2021. The median age was 48 years. The most frequent comorbidities were hypertension, obesity, and diabetes. The ICU admission rate was 19%, and the in-hospital mortality rate was 20%. The implemented strategies provided rapid and reliable information collection for the registry of emerging studies from the different clinical areas. Regular data quality and feedback are essential to ensure the reliability of the information. The integration of automatic data extraction reduces time consumption in information gathering and resources.

摘要

登记册对于做出有价值的临床和流行病学决策至关重要。设计一个登记册具有挑战性,因为它既耗时又耗费资源,在低收入和中等收入国家尤其如此。在此,我们描述了我们在哥伦比亚卡利设计、建立和实施基于医院的新冠病毒疾病登记册的经验。我们基于动态网络结构设计并实施了一个基于医院的登记册,以记录所有社会人口统计学、临床和实验室检查、影像学、治疗以及新冠病毒的相关结果。我们纳入了2020年3月至2021年3月期间4458例18岁及以上的确诊新冠病毒疾病病例。中位年龄为48岁。最常见的合并症是高血压、肥胖症和糖尿病。重症监护病房入住率为19%,院内死亡率为20%。所实施的策略为来自不同临床领域的新兴研究登记册提供了快速且可靠的信息收集。定期的数据质量检查和反馈对于确保信息的可靠性至关重要。自动数据提取的整合减少了信息收集的时间消耗和资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5f/9945791/606947019354/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验