Suppr超能文献

在无缝I-II期临床试验中将细胞毒性药物与持续剂量水平相结合。

Combining cytotoxic agents with continuous dose levels in seamless phase I-II clinical trials.

作者信息

Jiménez José L, Tighiouart Mourad

机构信息

Novartis Pharma A.G., Basel, Switzerland.

Cedars-Sinai Medical Center, Los Angeles, USA.

出版信息

J R Stat Soc Ser C Appl Stat. 2022 Nov;71(5):1996-2013. doi: 10.1111/rssc.12598. Epub 2022 Oct 26.

Abstract

Phase I-II cancer clinical trial designs are intended to accelerate drug development. In cases where efficacy cannot be ascertained in a short period of time, it is common to divide the study in two stages: i) a first stage in which dose is escalated based only on toxicity data and we look for the maximum tolerated dose (MTD) set and ii) a second stage in which we search for the most efficacious dose within the MTD set. Current available approaches in the area of continuous dose levels involve fixing the MTD after stage I and discarding all collected stage I efficacy data. However, this methodology is clearly inefficient when there is a unique patient population present across stages. In this article, we propose a two-stage design for the combination of two cytotoxic agents assuming a single patient population across the entire study. In stage I, conditional escalation with overdose control (EWOC) is used to allocate successive cohorts of patients. In stage II, we employ an adaptive randomization approach to allocate patients to drug combinations along the estimated MTD curve, which is constantly updated. The proposed methodology is assessed with extensive simulations in the context of a real case study.

摘要

I-II期癌症临床试验设计旨在加速药物研发。在无法在短时间内确定疗效的情况下,通常将研究分为两个阶段:i)第一阶段,仅根据毒性数据增加剂量,寻找最大耐受剂量(MTD);ii)第二阶段,在MTD范围内寻找最有效剂量。当前连续剂量水平领域的现有方法包括在第一阶段确定MTD后,丢弃所有收集到的第一阶段疗效数据。然而,当各阶段存在单一患者群体时,这种方法显然效率低下。在本文中,我们假设整个研究中有单一患者群体,提出了一种两种细胞毒性药物联合使用的两阶段设计。在第一阶段,使用带过量控制的条件递增法(EWOC)分配连续的患者队列。在第二阶段,我们采用自适应随机化方法,将患者沿着不断更新的估计MTD曲线分配到药物组合中。在一个实际案例研究的背景下,通过广泛的模拟对所提出的方法进行了评估。

相似文献

1
Combining cytotoxic agents with continuous dose levels in seamless phase I-II clinical trials.
J R Stat Soc Ser C Appl Stat. 2022 Nov;71(5):1996-2013. doi: 10.1111/rssc.12598. Epub 2022 Oct 26.
2
A Bayesian seamless phase I-II trial design with two stages for cancer clinical trials with drug combinations.
Biom J. 2020 Sep;62(5):1300-1314. doi: 10.1002/bimj.201900095. Epub 2020 Mar 9.
3
Two-stage design for phase I-II cancer clinical trials using continuous dose combinations of cytotoxic agents.
J R Stat Soc Ser C Appl Stat. 2019 Jan;68(1):235-250. doi: 10.1111/rssc.12294. Epub 2018 Jun 22.
4
Toxicity-dependent feasibility bounds for the escalation with overdose control approach in phase I cancer trials.
Stat Med. 2017 Jul 20;36(16):2499-2513. doi: 10.1002/sim.7280. Epub 2017 Mar 15.
6
Escalation with overdose control using all toxicities and time to event toxicity data in cancer Phase I clinical trials.
Contemp Clin Trials. 2014 Mar;37(2):322-32. doi: 10.1016/j.cct.2014.02.004. Epub 2014 Feb 12.
7
A Bayesian adaptive design for dual-agent phase I-II oncology trials integrating efficacy data across stages.
Biom J. 2023 Oct;65(7):e2200288. doi: 10.1002/bimj.202200288. Epub 2023 May 18.
8
Dose escalation with overdose control using a quasi-continuous toxicity score in cancer Phase I clinical trials.
Contemp Clin Trials. 2012 Sep;33(5):949-58. doi: 10.1016/j.cct.2012.04.007. Epub 2012 Apr 25.
10
Dose escalation with over-dose and under-dose controls in Phase I/II clinical trials.
Contemp Clin Trials. 2015 Jul;43:133-41. doi: 10.1016/j.cct.2015.05.014. Epub 2015 May 24.

引用本文的文献

1
A Bayesian adaptive design for dual-agent phase I-II oncology trials integrating efficacy data across stages.
Biom J. 2023 Oct;65(7):e2200288. doi: 10.1002/bimj.202200288. Epub 2023 May 18.

本文引用的文献

1
A Bayesian adaptive design for dual-agent phase I-II oncology trials integrating efficacy data across stages.
Biom J. 2023 Oct;65(7):e2200288. doi: 10.1002/bimj.202200288. Epub 2023 May 18.
2
A Bayesian seamless phase I-II trial design with two stages for cancer clinical trials with drug combinations.
Biom J. 2020 Sep;62(5):1300-1314. doi: 10.1002/bimj.201900095. Epub 2020 Mar 9.
3
A Bayesian Phase I/II Trial Design for Immunotherapy.
J Am Stat Assoc. 2018;113(523):1016-1027. doi: 10.1080/01621459.2017.1383260. Epub 2018 Jun 28.
4
AAA: triple adaptive Bayesian designs for the identification of optimal dose combinations in dual-agent dose finding trials.
J R Stat Soc Ser C Appl Stat. 2019 Feb;68(2):385-410. doi: 10.1111/rssc.12291. Epub 2018 Jun 13.
5
Two-stage design for phase I-II cancer clinical trials using continuous dose combinations of cytotoxic agents.
J R Stat Soc Ser C Appl Stat. 2019 Jan;68(1):235-250. doi: 10.1111/rssc.12294. Epub 2018 Jun 22.
7
Two-stage approach based on zone and dose findings for two-agent combination Phase I/II trials.
J Biopharm Stat. 2018;28(6):1025-1037. doi: 10.1080/10543406.2018.1434190. Epub 2018 Feb 8.
8
Toxicity-dependent feasibility bounds for the escalation with overdose control approach in phase I cancer trials.
Stat Med. 2017 Jul 20;36(16):2499-2513. doi: 10.1002/sim.7280. Epub 2017 Mar 15.
9
A practical Bayesian design to identify the maximum tolerated dose contour for drug combination trials.
Stat Med. 2016 Nov 30;35(27):4924-4936. doi: 10.1002/sim.7095. Epub 2016 Aug 31.
10
An adaptive dose-finding method using a change-point model for molecularly targeted agents in phase I trials.
Stat Med. 2016 Oct 15;35(23):4093-109. doi: 10.1002/sim.6981. Epub 2016 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验