Suppr超能文献

塑料生活,奇妙无比!如何利用基因组不稳定性来塑造基因表达。

Life in plastic, it's fantastic! How exploit genome instability to shape gene expression.

机构信息

Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.

The Wellcome Centre for Integrative Parasitology, School of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom.

出版信息

Front Cell Infect Microbiol. 2023 Jan 26;13:1102462. doi: 10.3389/fcimb.2023.1102462. eCollection 2023.

Abstract

are kinetoplastid pathogens that cause leishmaniasis, a debilitating and potentially life-threatening infection if untreated. Unusually, regulate their gene expression largely post-transcriptionally due to the arrangement of their coding genes into polycistronic transcription units that may contain 100s of functionally unrelated genes. Yet, are capable of rapid and responsive changes in gene expression to challenging environments, often instead correlating with dynamic changes in their genome composition, ranging from chromosome and gene copy number variations to the generation of extrachromosomal DNA and the accumulation of point mutations. Typically, such events indicate genome instability in other eukaryotes, coinciding with genetic abnormalities, but for , exploiting these products of genome instability can provide selectable substrates to catalyse necessary gene expression changes by modifying gene copy number. Unorthodox DNA replication, DNA repair, replication stress factors and DNA repeats are recognised in as contributors to this intrinsic instability, but how regulate genome plasticity to enhance fitness whilst limiting toxic under- or over-expression of co-amplified and co-transcribed genes is unclear. Herein, we focus on fresh, and detailed insights that improve our understanding of genome plasticity in . Furthermore, we discuss emerging models and factors that potentially circumvent regulatory issues arising from polycistronic transcription. Lastly, we highlight key gaps in our understanding of genome plasticity and discuss future studies to define, in higher resolution, these complex regulatory interactions.

摘要

是引起利什曼病的动基体原虫病原体,如果不治疗,这种病会使人虚弱,并可能危及生命。不同寻常的是,由于其编码基因被排列成多顺反子转录单元,这些单元可能包含数百个功能上不相关的基因,因此它们主要通过转录后调控基因表达。然而,它们能够快速而敏感地对挑战性环境中的基因表达进行改变,这通常与它们基因组组成的动态变化相关,从染色体和基因拷贝数的变化到额外染色体 DNA 的产生和点突变的积累。通常情况下,这些事件表明其他真核生物的基因组不稳定,同时伴随着遗传异常,但对于 ,利用这些基因组不稳定的产物可以通过改变基因拷贝数为必要的基因表达变化提供可选择的底物。异常的 DNA 复制、DNA 修复、复制应激因子和 DNA 重复序列被认为是导致这种固有不稳定性的因素,但 如何调节基因组可塑性以提高适应性,同时限制共扩增和共转录基因的过度或过低表达所导致的毒性,目前尚不清楚。本文中,我们将重点介绍一些新的、详细的见解,这些见解增进了我们对 基因组可塑性的理解。此外,我们还讨论了新兴的模型和因素,这些模型和因素可能规避了多顺反子转录引起的调控问题。最后,我们强调了我们对 基因组可塑性理解的关键空白,并讨论了未来的研究,以更高的分辨率定义这些复杂的调控相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f263/9910336/9cff1da94fa5/fcimb-13-1102462-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验