Brette Florian, Kourati Dani, Paris Michael, Loupias Lola, Célérier Stéphane, Cabioc'h Thierry, Deschamps Michael, Boucher Florent, Mauchamp Vincent
Université de Poitiers, ISAE-ENSMA, CNRS, PPRIME, 86073 Poitiers, France.
Nantes Université, CNRS, Institut des Matériaux De Nantes Jean Rouxel, IMN, F-44000 Nantes, France.
J Am Chem Soc. 2023 Feb 13. doi: 10.1021/jacs.2c11290.
The surface functionalization of 2D transition metal carbides or nitrides, so-called MXenes, is one of the fundamental levers allowing to deeply modify their physicochemical properties. Beyond new approaches to control this pivotal parameter, the ability to unambiguously assess their surface chemistry is thus key to expand the application fields of this large class of 2D materials. Using a combination of experiments and state of the art density functional theory calculations, we show that the NMR signal of the carbon─the element common to all MXene carbides and corresponding MAX phase precursors─is extremely sensitive to the MXene functionalization, although carbon atoms are not directly bonded to the surface groups. The simulations include the orbital part to the NMR shielding and the contribution from the Knight shift, which is crucial to achieve good correlation with the experimental data, as demonstrated on a set of reference MXene precursors. Starting with the TiCT MXene benchmark system, we confirm the high sensitivity of the C NMR shift to the exfoliation process. Developing a theoretical protocol to straightforwardly simulate different surface chemistries, we show that the C NMR shift variations can be quantitatively related to different surface compositions and number of surface chemistry variants induced by the different etching agents. In addition, we propose that the etching agent affects not only the nature of the surface groups but also their spatial distribution. The direct correlation between surface chemistry and C NMR shift is further confirmed on the VCT, MoCT, and NbCT MXenes.
二维过渡金属碳化物或氮化物(即所谓的MXenes)的表面功能化是能够深度改变其物理化学性质的基本手段之一。除了控制这一关键参数的新方法外,明确评估其表面化学性质的能力对于拓展这类二维材料的应用领域至关重要。通过结合实验和先进的密度泛函理论计算,我们表明,尽管碳原子不直接与表面基团键合,但碳(所有MXene碳化物及其相应MAX相前驱体共有的元素)的核磁共振信号对MXene功能化极为敏感。模拟包括核磁共振屏蔽的轨道部分和奈特位移的贡献,正如在一组参考MXene前驱体上所证明的那样,这对于与实验数据实现良好的相关性至关重要。从TiCT MXene基准体系出发,我们证实了碳核磁共振位移对剥离过程的高敏感性。通过开发一种直接模拟不同表面化学性质的理论方案,我们表明碳核磁共振位移的变化可以与不同蚀刻剂引起的不同表面组成和表面化学变体数量定量相关。此外,我们提出蚀刻剂不仅影响表面基团的性质,还影响其空间分布。在VCT、MoCT和NbCT MXenes上进一步证实了表面化学与碳核磁共振位移之间的直接相关性。