Wei Xianshuo, Wu Qijun, Chen Lian, Sun Ye, Chen Lin, Zhang Chunmei, Li Shanshan, Ma Chunxin, Jiang Shaohua
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
ACS Appl Mater Interfaces. 2023 Feb 13. doi: 10.1021/acsami.2c22831.
As a kind of soft smart material, hydrogel actuators have extensive development prospects, but it is still difficult for these actuators to integrate multiresponsiveness, multiple remote actuation, high strength, fast responsiveness, and programmable complex deformation. Herein, we have explored an anisotropic bilayer hydrogel actuator with an FeO/co-poly(isopropylacrylamide-4-benzoylphenyl acrylate) [FeO/P(NIPAM-ABP)] active layer and an isotropic conductive adhesive (ICAs) passive layer based on the layer-by-layer method. Benefiting from the fibrosis and porosity of the FeO/P(NIPAM-ABP) hydrogel, the ICAs-FeO/P(NIPAM-ABP) hydrogel actuator has excellent mechanical strength (tensile strength of 3.1 ± 0.3 MPa) and response speed (temperature (45 °C): bending speed of 2400.3°/s; near-infrared (NIR) light: bending speed of 356.4°/s; electricity (2 V): bending speed of 180°/s; water (10 °C): recovery speed of 30.0°/s). In addition, the good photothermal properties and magnetic conductivity of FeO nanoparticles provide precise remotely controllable light- and magnetic-actuated properties for the hydrogel actuator. The Ag microsheets with excellent conductivity (1.4 × 10 S/cm) provide remotely controllable electrical-actuated property for the hydrogel actuator. Combined with the responsiveness of P(NIPAM-ABP), the actuator can achieve short-range actuation including temperature-, ethanol-, and salt-responses. More importantly, it can achieve remote actuation including light, electrical, and magnetic responses. Finally, the FeO/P(NIPAM-ABP) fibers can provide excellent anisotropic structures for the actuator to achieve precise deformational programmability. Inspired by some phenomena in nature, several actuating devices with the above characteristics have been successfully developed. This study can provide a general method for multifunctional anisotropic hydrogel actuators and will provide a new strategy for exploring smart materials suitable for complex bioinspired systems.
作为一种柔软的智能材料,水凝胶致动器具有广阔的发展前景,但这些致动器仍难以集成多响应性、多种远程驱动、高强度、快速响应性和可编程的复杂变形。在此,我们基于逐层法探索了一种具有FeO/共聚(异丙基丙烯酰胺-4-苯甲酰基苯基丙烯酸酯)[FeO/P(NIPAM-ABP)]活性层和各向同性导电粘合剂(ICAs)被动层的各向异性双层水凝胶致动器。受益于FeO/P(NIPAM-ABP)水凝胶的纤维化和孔隙率,ICAs-FeO/P(NIPAM-ABP)水凝胶致动器具有出色的机械强度(拉伸强度为3.1±0.3MPa)和响应速度(温度(45°C):弯曲速度为2400.3°/s;近红外(NIR)光:弯曲速度为356.4°/s;电(2V):弯曲速度为180°/s;水(10°C):恢复速度为30.0°/s)。此外,FeO纳米颗粒良好的光热性能和磁导率为水凝胶致动器提供了精确的远程可控光驱动和磁驱动性能。具有优异电导率(1.4×10 S/cm)的Ag微片为水凝胶致动器提供了远程可控的电驱动性能。结合P(NIPAM-ABP)的响应性,该致动器可以实现包括温度、乙醇和盐响应在内的短程驱动。更重要的是,它可以实现包括光、电和磁响应在内的远程驱动。最后,FeO/P(NIPAM-ABP)纤维可以为致动器提供出色的各向异性结构,以实现精确的变形可编程性。受自然界中一些现象的启发,已经成功开发了几种具有上述特性的驱动装置。这项研究可以为多功能各向异性水凝胶致动器提供一种通用方法,并将为探索适用于复杂生物启发系统的智能材料提供新策略。