Suppr超能文献

具有远程控制功能的超快速且多响应各向异性纳米纤维致动器。

Ultra-fast and multi-responsive anisotropic nanofibrous actuator with remote control.

作者信息

Zhu Zijun, He Lantao, Guo Tingxu, Shao Tong, Lan Jianwu, Lin Shaojian, Theato Patrick, Shang Jiaojiao

机构信息

College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.

Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG-3), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany.

出版信息

J Mater Chem B. 2025 Sep 10;13(35):10853-10863. doi: 10.1039/d5tb01168j.

Abstract

The development of high-performance soft actuators capable of integrating multimodal responsiveness, ultrafast actuation, and programmable deformation remains a critical challenge in soft robotics, primarily due to inherent limitations in current hydrogel-based and elastomer-based systems. These conventional actuators often suffer from compromised functionality, slow response kinetics, and complex fabrication processes. Herein, we present an anisotropic nanofibrous actuator platform that overcomes these limitations through the synergistic combination of structurally aligned electrospun nanofibers and multi-stimulus responsive polymer composites. Our design uniquely integrates three independent actuation mechanisms-thermoresponsive poly(-isopropyl acrylamide--4-acryloyl benzophenone) (P(NIPAM--ABP)), photothermally active gold nanoparticles, and pH-sensitive poly(diethylaminoethyl methacrylate--methyl methacrylate--4-acryloyl benzophenone) (P(DEAEMA--MMA--ABP))-within an oriented nanofibrous architecture. Precise control of fiber alignment through electrospinning techniques enables programmable directional bending responses, while the bilayer configuration facilitates asymmetric deformation through differential swelling behavior. The highly porous nanofibrous network architecture provides rapid mass transport pathways, yielding exceptional actuation speeds (<0.3 s, 360°) that surpass conventional hydrogel-based systems. Furthermore, the actuator still maintains its rapid responsiveness in the air (4 s, 35°). Additionally, the aligned nanofiber morphology contributes to remarkable mechanical robustness, supporting loads up to 178 times its own mass. This work establishes a versatile materials platform that addresses critical challenges in soft robotics by combining multimodal environmental responsiveness, ultrafast actuation kinetics, and programmable deformation control through a scalable fabrication approach. The design principles demonstrated here provide new opportunities for developing advanced soft robotic systems with biomimetic functionality and enhanced performance characteristics.

摘要

开发能够集成多模态响应性、超快驱动和可编程变形的高性能软致动器仍然是软机器人领域的一项关键挑战,主要是由于当前基于水凝胶和基于弹性体的系统存在固有限制。这些传统致动器往往存在功能受损、响应动力学缓慢和制造工艺复杂等问题。在此,我们提出了一种各向异性纳米纤维致动器平台,该平台通过结构排列的电纺纳米纤维与多刺激响应聚合物复合材料的协同组合克服了这些限制。我们的设计独特地将三种独立的驱动机制——热响应性聚(N-异丙基丙烯酰胺-4-丙烯酰基二苯甲酮)(P(NIPAM-ABP))、光热活性金纳米颗粒和pH敏感的聚(甲基丙烯酸二乙氨基乙酯-甲基丙烯酸甲酯-4-丙烯酰基二苯甲酮)(P(DEAEMA-MMA-ABP))——集成在一个定向纳米纤维结构中。通过静电纺丝技术精确控制纤维排列可实现可编程的定向弯曲响应,而双层结构则通过不同的溶胀行为促进不对称变形。高度多孔的纳米纤维网络结构提供了快速的质量传输途径,产生了超过传统水凝胶基系统的出色驱动速度(<0.3秒,360°)。此外,该致动器在空气中仍保持快速响应(4秒,35°)。此外,排列的纳米纤维形态有助于显著的机械稳健性,可支撑高达其自身质量178倍的负载。这项工作建立了一个通用的材料平台,通过可扩展的制造方法结合多模态环境响应性、超快驱动动力学和可编程变形控制,解决了软机器人领域的关键挑战。这里展示的设计原则为开发具有仿生功能和增强性能特征的先进软机器人系统提供了新机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验