College of Veterinary Medicine, Jilin Agricultural University, Changchun, People's Republic of China.
Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People's Republic of China.
J Virol. 2023 Feb 28;97(2):e0192322. doi: 10.1128/jvi.01923-22. Epub 2023 Feb 13.
African swine fever (ASF) is a devastating infectious disease of pigs caused by the African swine fever virus (ASFV), which poses a great danger to the global pig industry. Many viral proteins can suppress with interferon signaling to evade the host's innate immune responses. Therefore, the development of an effective vaccine against ASFV has been dampened. Recent studies have suggested that the L83L gene may be integrated into the host genome, weakening the host immune system, but the underlying mechanism is unknown. Our study found that L83L negatively regulates the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. Overexpression of L83L inhibited IFN-β promoter and ISRE activity, and knockdown of L83L induced higher transcriptional levels of interferon-stimulated genes (ISGs) and phosphorylation levels of IRF3 in primary porcine alveolar macrophages. Mechanistically, L83L interacted with cGAS and STING to promote autophagy-lysosomal degradation of STING by recruiting Tollip, thereby blocking the phosphorylation of the downstream signaling molecules TBK1, IRF3, and IκBα and reducing IFN-I production. Altogether, our study reveals a negative regulatory mechanism involving the L83L-cGAS-STING-IFN-I axis and provides insights into an evasion strategy involving autophagy and innate signaling pathways employed by ASFV. African swine fever virus (ASFV) is a large double-stranded DNA virus that primarily infects porcine macrophages. The ASFV genome encodes a large number of immunosuppressive proteins. Current options for the prevention and control of this pathogen remain pretty limited. Our study showed that overexpression of L83L inhibited the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. In contrast, the knockdown of L83L during ASFV infection enhanced IFN-I production in porcine alveolar macrophages. Additional analysis revealed that L83L protein downregulated IFN-I signaling by recruiting Tollip to promote STING autophagic degradation. Although L83L deletion has been reported to have little effect on viral replication, its immune evade mechanism has not been elucidated. The present study extends our understanding of the functions of ASFV-encoded pL83L and its immune evasion strategy, which may provide a new basis for developing a live attenuated vaccine for ASF.
非洲猪瘟 (ASF) 是一种由非洲猪瘟病毒 (ASFV) 引起的毁灭性猪传染病,对全球养猪业构成巨大威胁。许多病毒蛋白可以抑制干扰素信号转导,从而逃避宿主的先天免疫反应。因此,开发针对 ASFV 的有效疫苗受到了阻碍。最近的研究表明,L83L 基因可能整合到宿主基因组中,削弱宿主免疫系统,但潜在机制尚不清楚。我们的研究发现,L83L 负调控 cGAS-STING 介导的 I 型干扰素 (IFN-I) 信号通路。L83L 的过表达抑制 IFN-β 启动子和 ISRE 活性,而 L83L 的敲低诱导原代猪肺泡巨噬细胞中干扰素刺激基因 (ISG) 的转录水平和 IRF3 的磷酸化水平更高。在机制上,L83L 与 cGAS 和 STING 相互作用,通过招募 Tollip 促进 STING 的自噬溶酶体降解,从而阻断下游信号分子 TBK1、IRF3 和 IκBα 的磷酸化,减少 IFN-I 的产生。总之,我们的研究揭示了涉及 L83L-cGAS-STING-IFN-I 轴的负调控机制,并为 ASFV 涉及自噬和先天信号通路的逃逸策略提供了新的见解。非洲猪瘟病毒 (ASFV) 是一种主要感染猪巨噬细胞的大型双链 DNA 病毒。ASFV 基因组编码大量免疫抑制蛋白。目前预防和控制这种病原体的选择仍然非常有限。我们的研究表明,L83L 的过表达抑制了 cGAS-STING 介导的 I 型干扰素 (IFN-I) 信号通路。相比之下,在 ASFV 感染期间敲低 L83L 增强了猪肺泡巨噬细胞中 IFN-I 的产生。进一步分析表明,L83L 蛋白通过招募 Tollip 促进 STING 自噬降解来下调 IFN-I 信号。虽然已经报道 L83L 缺失对病毒复制几乎没有影响,但它的免疫逃避机制尚未阐明。本研究扩展了我们对 ASFV 编码的 pL83L 功能及其免疫逃避策略的理解,这可能为开发 ASF 活疫苗提供新的依据。