Suppr超能文献

社交媒体中的反烟草运动信息挖掘:Facebook 帖子的机器学习分析。

Social Media Data Mining of Antitobacco Campaign Messages: Machine Learning Analysis of Facebook Posts.

机构信息

Department of Health Administration and Policy, College of Public Health, George Mason University, Fairfax, VA, United States.

School of Computer Science and Engineering, Changshu Institute of Technology, Suzhou, Jiangsu Province, China.

出版信息

J Med Internet Res. 2023 Feb 13;25:e42863. doi: 10.2196/42863.

Abstract

BACKGROUND

Social media platforms provide a valuable source of public health information, as one-third of US adults seek specific health information online. Many antitobacco campaigns have recognized such trends among youth and have shifted their advertising time and effort toward digital platforms. Timely evidence is needed to inform the adaptation of antitobacco campaigns to changing social media platforms.

OBJECTIVE

In this study, we conducted a content analysis of major antitobacco campaigns on Facebook using machine learning and natural language processing (NLP) methods, as well as a traditional approach, to investigate the factors that may influence effective antismoking information dissemination and user engagement.

METHODS

We collected 3515 posts and 28,125 associated comments from 7 large national and local antitobacco campaigns on Facebook between 2018 and 2021, including the Real Cost, Truth, CDC Tobacco Free (formally known as Tips from Former Smokers, where "CDC" refers to the Centers for Disease Control and Prevention), the Tobacco Prevention Toolkit, Behind the Haze VA, the Campaign for Tobacco-Free Kids, and Smoke Free US campaigns. NLP methods were used for content analysis, including parsimonious rule-based models for sentiment analysis and topic modeling. Logistic regression models were fitted to examine the relationship of antismoking message-framing strategies and viewer responses and engagement.

RESULTS

We found that large campaigns from government and nonprofit organizations had more user engagements compared to local and smaller campaigns. Facebook users were more likely to engage in negatively framed campaign posts. Negative posts tended to receive more negative comments (odds ratio [OR] 1.40, 95% CI 1.20-1.65). Positively framed posts generated more negative comments (OR 1.41, 95% CI 1.19-1.66) as well as positive comments (OR 1.29, 95% CI 1.13-1.48). Our content analysis and topic modeling uncovered that the most popular campaign posts tended to be informational (ie, providing new information), where the key phrases included talking about harmful chemicals (n=43, 43%) as well as the risk to pets (n=17, 17%).

CONCLUSIONS

Facebook users tend to engage more in antitobacco educational campaigns that are framed negatively. The most popular campaign posts are those providing new information, with key phrases and topics discussing harmful chemicals and risks of secondhand smoke for pets. Educational campaign designers can use such insights to increase the reach of antismoking campaigns and promote behavioral changes.

摘要

背景

社交媒体平台提供了有价值的公共卫生信息来源,因为三分之一的美国成年人在线搜索特定的健康信息。许多反烟草运动已经认识到年轻人的这种趋势,并将他们的广告时间和精力转移到数字平台上。需要及时的证据来告知反烟草运动适应不断变化的社交媒体平台。

目的

在这项研究中,我们使用机器学习和自然语言处理 (NLP) 方法以及传统方法对 Facebook 上的主要反烟草运动进行了内容分析,以调查可能影响有效反吸烟信息传播和用户参与的因素。

方法

我们收集了 2018 年至 2021 年间 7 个大型国家和地方反烟草运动在 Facebook 上发布的 3515 条帖子和 28125 条相关评论,包括真实成本、真相、疾病预防控制中心无烟(前身为吸烟者提示,其中“CDC”是指疾病控制与预防中心)、烟草预防工具包、背后的阴霾 VA、无烟儿童运动和无烟美国运动。使用 NLP 方法进行内容分析,包括用于情感分析和主题建模的简约规则基础模型。拟合逻辑回归模型以检查反吸烟信息框架策略与观众反应和参与之间的关系。

结果

我们发现,与地方和规模较小的运动相比,来自政府和非营利组织的大型运动获得了更多的用户参与度。与正面信息相比,Facebook 用户更有可能参与负面信息框架的运动。负面帖子往往会收到更多负面评论(优势比 [OR] 1.40,95%CI 1.20-1.65)。正面帖子既产生更多负面评论(OR 1.41,95%CI 1.19-1.66),也产生更多正面评论(OR 1.29,95%CI 1.13-1.48)。我们的内容分析和主题建模发现,最受欢迎的运动帖子往往是信息性的(即提供新信息),关键短语包括谈论有害化学物质(n=43,43%)和宠物的风险(n=17,17%)。

结论

Facebook 用户倾向于更多地参与以负面信息为框架的反烟草教育运动。最受欢迎的运动帖子是提供新信息的帖子,关键短语和主题讨论有害化学物质和宠物的二手烟风险。教育运动设计师可以利用这些见解来扩大反吸烟运动的覆盖面并促进行为改变。

相似文献

10
Evaluation of antismoking advertising campaigns.反吸烟广告活动评估。
JAMA. 1998 Mar 11;279(10):772-7. doi: 10.1001/jama.279.10.772.

引用本文的文献

本文引用的文献

3
Tobacco Product Use Among Adults - United States, 2020.2020年美国成年人烟草制品使用情况
MMWR Morb Mortal Wkly Rep. 2022 Mar 18;71(11):397-405. doi: 10.15585/mmwr.mm7111a1.
7
Quality of healthcare information on YouTube: psoriatic arthritis.YouTube 上的医疗保健信息质量:银屑病关节炎。
Z Rheumatol. 2023 Jan;82(Suppl 1):30-37. doi: 10.1007/s00393-021-01069-1. Epub 2021 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验