Suppr超能文献

用于诊断和预后视觉解释的信息瓶颈归因

Information Bottleneck Attribution for Visual Explanations of Diagnosis and Prognosis.

作者信息

Demir Ugur, Irmakci Ismail, Keles Elif, Topcu Ahmet, Xu Ziyue, Spampinato Concetto, Jambawalikar Sachin, Turkbey Evrim, Turkbey Baris, Bagci Ulas

机构信息

Department of Radiology and BME, Northwestern University, Chicago, IL, USA.

ECE, Ege University, Izmir, Turkey.

出版信息

Mach Learn Med Imaging. 2021 Sep;12966:396-405. doi: 10.1007/978-3-030-87589-3_41. Epub 2021 Sep 21.

Abstract

Visual explanation methods have an important role in the prognosis of the patients where the annotated data is limited or unavailable. There have been several attempts to use gradient-based attribution methods to localize pathology from medical scans without using segmentation labels. This research direction has been impeded by the lack of robustness and reliability. These methods are highly sensitive to the network parameters. In this study, we introduce a robust visual explanation method to address this problem for medical applications. We provide an innovative visual explanation algorithm for general purpose and as an example application we demonstrate its effectiveness for quantifying lesions in the lungs caused by the Covid-19 with high accuracy and robustness without using dense segmentation labels. This approach overcomes the drawbacks of commonly used Grad-CAM and its extended versions. The premise behind our proposed strategy is that the information flow is minimized while ensuring the classifier prediction stays similar. Our findings indicate that the bottleneck condition provides a more stable severity estimation than the similar attribution methods. The source code will be publicly available upon publication.

摘要

可视化解释方法在注释数据有限或不可用的患者预后中具有重要作用。已经有几次尝试使用基于梯度的归因方法从医学扫描中定位病变,而不使用分割标签。由于缺乏鲁棒性和可靠性,这一研究方向受到了阻碍。这些方法对网络参数高度敏感。在本研究中,我们引入了一种鲁棒的可视化解释方法来解决医学应用中的这一问题。我们提供了一种通用的创新可视化解释算法,并作为示例应用,展示了其在不使用密集分割标签的情况下,高精度且鲁棒地量化新冠病毒导致的肺部病变的有效性。这种方法克服了常用的Grad-CAM及其扩展版本的缺点。我们提出的策略背后的前提是,在确保分类器预测保持相似的同时,信息流被最小化。我们的研究结果表明,瓶颈条件比类似的归因方法提供了更稳定的严重程度估计。源代码将在发表后公开提供。

相似文献

1
Information Bottleneck Attribution for Visual Explanations of Diagnosis and Prognosis.用于诊断和预后视觉解释的信息瓶颈归因
Mach Learn Med Imaging. 2021 Sep;12966:396-405. doi: 10.1007/978-3-030-87589-3_41. Epub 2021 Sep 21.
5
Weakly supervised segmentation for real-time surgical tool tracking.用于实时手术工具跟踪的弱监督分割
Healthc Technol Lett. 2019 Nov 26;6(6):231-236. doi: 10.1049/htl.2019.0083. eCollection 2019 Dec.
6
Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging.PET-CT混合成像中肿瘤病变的弱监督分割
J Med Imaging (Bellingham). 2021 Sep;8(5):054003. doi: 10.1117/1.JMI.8.5.054003. Epub 2021 Oct 13.
10
A Generalized Explanation Framework for Visualization of Deep Learning Model Predictions.一种用于深度学习模型预测可视化的广义解释框架。
IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):9265-9283. doi: 10.1109/TPAMI.2023.3241106. Epub 2023 Jun 30.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验