IEEE Trans Med Imaging. 2019 Aug;38(8):1971-1980. doi: 10.1109/TMI.2019.2911588. Epub 2019 Apr 16.
The segmentation of pancreas is important for medical image analysis, yet it faces great challenges of class imbalance, background distractions, and non-rigid geometrical features. To address these difficulties, we introduce a deep Q network (DQN) driven approach with deformable U-Net to accurately segment the pancreas by explicitly interacting with contextual information and extract anisotropic features from pancreas. The DQN-based model learns a context-adaptive localization policy to produce a visually tightened and precise localization bounding box of the pancreas. Furthermore, deformable U-Net captures geometry-aware information of pancreas by learning geometrically deformable filters for feature extraction. The experiments on NIH dataset validate the effectiveness of the proposed framework in pancreas segmentation.
胰腺分割对于医学图像分析非常重要,但它面临着严重的类别不平衡、背景干扰和非刚体几何特征等挑战。为了解决这些困难,我们引入了一种基于深度 Q 网络(DQN)的方法,该方法使用可变形 U-Net 进行胰腺的精确分割,通过与上下文信息的显式交互,从胰腺中提取各向异性特征。基于 DQN 的模型学习了一个上下文自适应的定位策略,生成一个视觉上更紧致、更精确的胰腺定位边界框。此外,可变形 U-Net 通过学习几何变形滤波器来捕获与几何相关的胰腺信息,以进行特征提取。在 NIH 数据集上的实验验证了所提出的框架在胰腺分割中的有效性。