Suppr超能文献

患者报告数据增加了择期上肢手术后持续性阿片类药物使用预测模型的准确性。

Patient-Reported Data Augment Prediction Models of Persistent Opioid Use after Elective Upper Extremity Surgery.

机构信息

From the Curtis National Hand Center at Medstar Union Memorial Hospital.

MedStar Health Research Institute.

出版信息

Plast Reconstr Surg. 2023 Aug 1;152(2):358e-366e. doi: 10.1097/PRS.0000000000010297. Epub 2023 Feb 14.

Abstract

BACKGROUND

Opioids play a role in pain management after surgery, but prolonged use contributes to developing opioid use disorder. Identifying patients at risk of prolonged use is critical for deploying interventions that reduce or avoid opioids; however, available predictive models do not incorporate patient-reported data (PRD), and it remains unclear whether PRD can predict postoperative use behavior. The authors used a machine learning approach leveraging preoperative PRD and electronic health record data to predict persistent opioid use after upper extremity surgery.

METHODS

Included patients underwent upper extremity surgery, completed preoperative PRD questionnaires, and were prescribed opioids after surgery. The authors trained models using a 2018 cohort and tested in a 2019 cohort. Opioid use was determined by patient report and filled prescriptions up to 6 months after surgery. The authors assessed model performance using area under the receiver operating characteristic, sensitivity, specificity, and Brier score.

RESULTS

Among 1656 patients, 19% still used opioids at 6 weeks, 11% at 3 months, and 9% at 6 months. The XGBoost model trained on PRD plus electronic health record data achieved area under the receiver operating characteristic 0.73 at 6 months. Factors predictive of prolonged opioid use included income; education; tobacco, drug, or alcohol abuse; cancer; depression; and race. Protective factors included preoperative Patient-Reported Outcomes Measurement Information System Global Physical Health and Upper Extremity scores.

CONCLUSIONS

This opioid use prediction model using preintervention data had good discriminative performance. PRD variables augmented electronic health record-based machine learning algorithms in predicting postsurgical use behaviors and were some of the strongest predictors. PRD should be used in future efforts to guide proper opioid stewardship.

CLINICAL QUESTION/LEVEL OF EVIDENCE: Risk, III.

摘要

背景

阿片类药物在手术后的疼痛管理中发挥作用,但长期使用会导致阿片类药物使用障碍。识别有长期使用风险的患者对于实施减少或避免使用阿片类药物的干预措施至关重要;然而,现有的预测模型并未纳入患者报告数据(PRD),而且尚不清楚 PRD 是否可以预测术后使用行为。作者使用机器学习方法利用术前 PRD 和电子健康记录数据来预测上肢手术后持续使用阿片类药物的情况。

方法

纳入的患者接受了上肢手术,完成了术前 PRD 问卷调查,并在手术后开具了阿片类药物。作者使用 2018 年队列进行模型训练,并在 2019 年队列中进行测试。通过患者报告和术后 6 个月内的处方来确定阿片类药物的使用情况。作者使用接收者操作特征曲线下面积、敏感度、特异度和 Brier 评分来评估模型性能。

结果

在 1656 名患者中,19%的患者在 6 周时仍在使用阿片类药物,11%的患者在 3 个月时仍在使用阿片类药物,9%的患者在 6 个月时仍在使用阿片类药物。基于 PRD 和电子健康记录数据训练的 XGBoost 模型在 6 个月时的接收者操作特征曲线下面积为 0.73。预测长期使用阿片类药物的因素包括收入、教育、烟草、药物或酒精滥用、癌症、抑郁和种族。保护因素包括术前患者报告的结局测量信息系统整体生理健康和上肢评分。

结论

该使用阿片类药物预测模型使用干预前的数据具有良好的区分性能。PRD 变量增强了基于电子健康记录的机器学习算法预测术后使用行为的能力,并且是最强的预测因素之一。PRD 应在未来指导适当的阿片类药物管理的工作中使用。

临床问题/证据水平:风险,III 级。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验