Suppr超能文献

人工智能增强心电图的生理年龄作为肾移植候选者死亡率的新危险因素。

Physiological Age by Artificial Intelligence-Enhanced Electrocardiograms as a Novel Risk Factor of Mortality in Kidney Transplant Candidates.

机构信息

Section of Nephrology, Baylor College of Medicine, Houston, TX.

Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ.

出版信息

Transplantation. 2023 Jun 1;107(6):1365-1372. doi: 10.1097/TP.0000000000004504. Epub 2023 Feb 13.

Abstract

BACKGROUND

Mortality risk assessment before kidney transplantation (KT) is imperfect. An emerging risk factor for death in nontransplant populations is physiological age as determined by the application of artificial intelligence to the electrocardiogram (ECG). The aim of this study was to examine the relationship between ECG age and KT waitlist mortality.

METHODS

We applied a previously developed convolutional neural network to the ECGs of KT candidates evaluated 2014 to 2019 to determine ECG age. We used a Cox proportional hazard model to examine whether ECG age was associated with waitlist mortality.

RESULTS

Of the 2183 patients evaluated, 59.1% were male, 81.4% were white, and 11.4% died during follow-up. Mean ECG age was 59.0 ± 12.0 y and mean chronological age at ECG was 53.3 ± 13.6 y. After adjusting for chronological age, comorbidities, and other characteristics associated with mortality, each increase in ECG age of >10 y than the average ECG age for patients of a similar chronological age was associated with an increase in mortality risk (hazard ratio 3.59 per 10-y increase; 95% confidence interval, 2.06-5.72; P  < 0.0001).

CONCLUSIONS

ECG age is a risk factor for KT waitlist mortality. Determining ECG age through artificial intelligence may help guide risk-benefit assessment when evaluating candidates for KT.

摘要

背景

肾移植(KT)前的死亡率评估并不完善。在非移植人群中,一种新的死亡风险因素是通过人工智能应用于心电图(ECG)确定的生理年龄。本研究旨在探讨 ECG 年龄与 KT 候补者死亡率之间的关系。

方法

我们应用之前开发的卷积神经网络来评估 2014 年至 2019 年的 KT 候选者的 ECG,以确定 ECG 年龄。我们使用 Cox 比例风险模型来检验 ECG 年龄是否与候补者死亡率相关。

结果

在 2183 名接受评估的患者中,59.1%为男性,81.4%为白人,11.4%在随访期间死亡。平均 ECG 年龄为 59.0±12.0 岁,平均心电图年龄为 53.3±13.6 岁。在调整了年龄、合并症和其他与死亡率相关的特征后,与类似年龄的患者的平均 ECG 年龄相比,ECG 年龄每增加 10 岁以上与死亡率风险增加相关(风险比为每增加 10 岁增加 3.59;95%置信区间,2.06-5.72;P  < 0.0001)。

结论

ECG 年龄是 KT 候补者死亡率的一个风险因素。通过人工智能确定 ECG 年龄可能有助于在评估 KT 候选者时指导风险效益评估。

相似文献

引用本文的文献

2
Role of Artificial Intelligence in Congenital Heart Disease and Interventions.人工智能在先天性心脏病及干预中的作用。
J Soc Cardiovasc Angiogr Interv. 2025 Mar 18;4(3Part B):102567. doi: 10.1016/j.jscai.2025.102567. eCollection 2025 Mar.
6
Ethical perspective on AI hazards to humans: A review.人工智能对人类的伦理风险视角:综述
Medicine (Baltimore). 2023 Dec 1;102(48):e36163. doi: 10.1097/MD.0000000000036163.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验