Suppr超能文献

人工智能心电图在肝移植候选者风险评估中的应用。

Utility of an Artificial Intelligence Enabled Electrocardiogram for Risk Assessment in Liver Transplant Candidates.

机构信息

Department of Medicine, Mayo Clinic, Jacksonville, FL, USA.

Department of Transplantation, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.

出版信息

Dig Dis Sci. 2023 Jun;68(6):2379-2388. doi: 10.1007/s10620-023-07928-y. Epub 2023 Apr 6.

Abstract

BACKGROUND

Post-operative cardiac complications occur infrequently but contribute to mortality after liver transplantation (LT). Artificial intelligence-based algorithms based on electrocardiogram (AI-ECG) are attractive for use during pre-operative evaluation to screen for risk of post-operative cardiac complications, but their use for this purpose is unknown.

AIMS

The aim of this study was to evaluate the performance of an AI-ECG algorithm in predicting cardiac factors such as asymptomatic left ventricular systolic dysfunction or potential for developing post-operative atrial fibrillation (AF) in cohorts of patients with end-stage liver disease either undergoing evaluation for transplant or receiving a liver transplant.

METHODS

A retrospective study was performed in two consecutive adult cohorts of patients who were either evaluated for LT or underwent LT at a single center between 2017 and 2019. ECG were analyzed using an AI-ECG trained to recognize patterns from a standard 12-lead ECG which could identify the presence of left ventricular systolic dysfunction (LVEF < 50%) or subsequent atrial fibrillation.

RESULTS

The performance of AI-ECG in patients undergoing LT evaluation is similar to that in a general population but was lower in the presence of prolonged QTc. AI-ECG analysis on ECG in sinus rhythm had an AUROC of 0.69 for prediction of de novo post-transplant AF. Although post-transplant cardiac dysfunction occurred in only 2.3% of patients in the study cohorts, AI-ECG had an AUROC of 0.69 for prediction of subsequent low left ventricular ejection fraction.

CONCLUSIONS

A positive screen for low EF or AF on AI-ECG can alert to risk of post-operative cardiac dysfunction or predict new onset atrial fibrillation after LT. The use of an AI-ECG can be a useful adjunct in persons undergoing transplant evaluation that can be readily implemented in clinical practice.

摘要

背景

术后心脏并发症虽不常见,但会增加肝移植(LT)后的死亡率。基于心电图(ECG)的人工智能(AI)算法在术前评估中用于筛查术后心脏并发症风险具有吸引力,但尚未将其用于该目的。

目的

本研究旨在评估 AI-ECG 算法在预测心脏因素(如无症状左心室收缩功能障碍或发生术后心房颤动(AF)的可能性)方面的性能,这些心脏因素存在于接受 LT 评估或接受 LT 的终末期肝病患者队列中。

方法

对 2017 年至 2019 年间在一家中心接受 LT 评估或接受 LT 的连续两批成年患者队列进行回顾性研究。使用经过训练可识别标准 12 导联心电图中模式的 AI-ECG 分析心电图,这些模式可以识别左心室收缩功能障碍(LVEF<50%)或随后的心房颤动的存在。

结果

AI-ECG 在接受 LT 评估的患者中的表现与一般人群相似,但在 QTc 延长时较低。AI-ECG 分析窦性节律心电图对新发移植后 AF 的预测 AUC 为 0.69。尽管研究队列中只有 2.3%的患者发生移植后心脏功能障碍,但 AI-ECG 对预测随后的低左心室射血分数的 AUC 为 0.69。

结论

AI-ECG 上出现低 EF 或 AF 的阳性筛查结果可提示术后心脏功能障碍的风险或预测 LT 后新发心房颤动。AI-ECG 的使用可以作为接受移植评估的人的有用辅助手段,并且可以在临床实践中方便地实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d408/10077316/5c71584e523e/10620_2023_7928_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验