Departments of Surgery and Immunology, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN.
Department of General Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv, Israel.
Transplantation. 2024 Sep 1;108(9):1976-1985. doi: 10.1097/TP.0000000000005023. Epub 2024 Apr 1.
Predicting long-term mortality postkidney transplantation (KT) using baseline clinical data presents significant challenges. This study aims to evaluate the predictive power of artificial intelligence (AI)-enabled analysis of preoperative electrocardiograms (ECGs) in forecasting long-term mortality following KT.
We analyzed preoperative ECGs from KT recipients at three Mayo Clinic sites (Minnesota, Florida, and Arizona) between January 1, 2006, and July 30, 2021. The study involved 6 validated AI algorithms, each trained to predict future development of atrial fibrillation, aortic stenosis, low ejection fraction, hypertrophic cardiomyopathy, amyloid heart disease, and biological age. These algorithms' outputs based on a single preoperative ECG were correlated with patient mortality data.
Among 6504 KT recipients included in the study, 1764 (27.1%) died within a median follow-up of 5.7 y (interquartile range: 3.00-9.29 y). All AI-ECG algorithms were independently associated with long-term all-cause mortality ( P < 0.001). Notably, few patients had a clinical cardiac diagnosis at the time of transplant, indicating that AI-ECG scores were predictive even in asymptomatic patients. When adjusted for multiple clinical factors such as recipient age, diabetes, and pretransplant dialysis, AI algorithms for atrial fibrillation and aortic stenosis remained independently associated with long-term mortality. These algorithms also improved the C-statistic for predicting overall (C = 0.74) and cardiac-related deaths (C = 0.751).
The findings suggest that AI-enabled preoperative ECG analysis can be a valuable tool in predicting long-term mortality following KT and could aid in identifying patients who may benefit from enhanced cardiac monitoring because of increased risk.
使用基线临床数据预测肾移植(KT)后的长期死亡率存在很大的挑战。本研究旨在评估人工智能(AI)分析术前心电图(ECG)在预测 KT 后长期死亡率方面的预测能力。
我们分析了 2006 年 1 月 1 日至 2021 年 7 月 30 日期间在梅奥诊所三个地点(明尼苏达州、佛罗里达州和亚利桑那州)接受 KT 的患者的术前 ECG。该研究涉及 6 种经过验证的 AI 算法,每种算法都经过训练可预测心房颤动、主动脉瓣狭窄、射血分数低、肥厚型心肌病、淀粉样心脏疾病和生物年龄的未来发展。根据单个术前 ECG,这些算法的输出与患者死亡率数据相关。
在本研究纳入的 6504 名 KT 受者中,1764 名(27.1%)在中位随访 5.7 年内死亡(四分位距:3.00-9.29 年)。所有 AI-ECG 算法均与长期全因死亡率独立相关(P<0.001)。值得注意的是,在移植时,很少有患者有临床心脏诊断,这表明 AI-ECG 评分甚至在无症状患者中也是可预测的。在调整了受者年龄、糖尿病和移植前透析等多种临床因素后,心房颤动和主动脉瓣狭窄的 AI 算法仍然与长期死亡率独立相关。这些算法还提高了预测总死亡率(C=0.74)和心脏相关死亡率(C=0.751)的 C 统计量。
这些发现表明,AI 辅助的术前 ECG 分析可能是预测 KT 后长期死亡率的有价值工具,并可帮助识别因风险增加而可能受益于强化心脏监测的患者。