Schmidt Ginger, Bouma Brett E, Uribe-Patarroyo Néstor
Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA.
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Massachusetts 02139, USA.
Optica. 2024 Sep 20;11(9):1285-1294. doi: 10.1364/optica.528507. Epub 2024 Sep 10.
Optical coherence elastography measures elasticity-a property correlated with pathologies such as tumors due to fibrosis, atherosclerosis due to heterogeneous plaque composition, and ocular diseases such as keratoconus and glaucoma. Wave-based elastography, including reverberant elastography, leverages the properties of shear waves traveling through tissue primarily to infer shear modulus. These methods have already seen significant development over the past decade. However, existing implementations in OCT require robust synchronization of shear wave excitation with imaging, complicating widespread clinical adoption. We present a method for complete recovery of the harmonic shear wave field in an asynchronous, conventional frame-rate, raster-scanning OCT system by modeling raster-scanning as an amplitude modulation of the displacement field. This technique recovers the entire spatially and temporally coherent complex valued shear wave field from just two B-scans, while reducing the time scale for sensitivity to motion from minutes to tens of milliseconds. To the best of our knowledge, this work represents the first successful demonstration of reverberant elastography on a human subject with a conventional frame-rate, raster-scanning OCT system, greatly expanding opportunity for widespread translation.
光学相干弹性成像可测量弹性——一种与多种病变相关的属性,这些病变包括因纤维化导致的肿瘤、因斑块成分不均一引起的动脉粥样硬化以及诸如圆锥角膜和青光眼等眼部疾病。基于波的弹性成像,包括混响弹性成像,主要利用剪切波在组织中传播的特性来推断剪切模量。在过去十年中,这些方法已经取得了显著进展。然而,现有的光学相干断层扫描(OCT)实现方式需要将剪切波激发与成像进行稳健同步,这使得其在临床上广泛应用变得复杂。我们提出了一种方法,通过将光栅扫描建模为位移场的幅度调制,在异步、传统帧率、光栅扫描的OCT系统中完全恢复谐波剪切波场。该技术仅从两次B扫描中就能恢复整个空间和时间上相干的复值剪切波场,同时将对运动敏感的时间尺度从几分钟缩短到几十毫秒。据我们所知,这项工作首次成功地在人体上利用传统帧率、光栅扫描的OCT系统进行了混响弹性成像演示,极大地拓展了广泛应用的可能性。