Suppr超能文献

使用最优特征集对胎儿心率减速进行分类的机器学习管道。

A machine learning pipeline to classify foetal heart rate deceleration with optimal feature set.

机构信息

West Bengal State University, Kolkata, 700126, India.

Aliah University, Kolkata, 700156, India.

出版信息

Sci Rep. 2023 Feb 13;13(1):2495. doi: 10.1038/s41598-023-27707-z.

Abstract

Deceleration is considered a commonly practised means to assess Foetal Heart Rate (FHR) through visual inspection and interpretation of patterns in Cardiotocography (CTG). The precision of deceleration classification relies on the accurate estimation of corresponding event points (EP) from the FHR and the Uterine Contraction Pressure (UCP). This work proposes a deceleration classification pipeline by comparing four machine learning (ML) models, namely, Multilayer Perceptron (MLP), Random Forest (RF), Naïve Bayes (NB), and Simple Logistics Regression. Towards an automated classification of deceleration from EP using the pipeline, it systematically compares three approaches to create feature sets from the detected EP: (1) a novel fuzzy logic (FL)-based approach, (2) expert annotation by clinicians, and (3) calculated using National Institute of Child Health and Human Development guidelines. The classification results were validated using different popular statistical metrics, including receiver operating characteristic curve, intra-class correlation coefficient, Deming regression, and Bland-Altman Plot. The highest classification accuracy (97.94%) was obtained with MLP when the EP was annotated with the proposed FL approach compared to RF, which obtained 63.92% with the clinician-annotated EP. The results indicate that the FL annotated feature set is the optimal one for classifying deceleration from FHR.

摘要

减速被认为是一种常用的方法,通过观察和解释胎心监护图(CTG)中的模式来评估胎儿心率(FHR)。减速分类的精度依赖于从 FHR 和子宫收缩压力(UCP)中准确估计相应的事件点(EP)。本工作通过比较四种机器学习(ML)模型,即多层感知器(MLP)、随机森林(RF)、朴素贝叶斯(NB)和简单逻辑回归(Simple Logistics Regression),提出了一种减速分类管道。为了实现从 EP 自动分类减速,它系统地比较了三种方法来从检测到的 EP 创建特征集:(1)一种新颖的基于模糊逻辑(FL)的方法,(2)临床医生的专家注释,和(3)使用国家儿童健康与人类发展研究所指南计算。使用不同的流行统计指标,包括接收者操作特征曲线、组内相关系数、Deming 回归和 Bland-Altman 图,对分类结果进行了验证。当 EP 使用提出的 FL 方法进行注释时,MLP 获得了最高的分类准确性(97.94%),而 RF 则使用临床医生注释的 EP 获得了 63.92%。结果表明,FL 注释的特征集是从 FHR 中分类减速的最佳特征集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ed1/9925757/233abc7497c6/41598_2023_27707_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验