Suppr超能文献

使用卷积神经网络对有无子宫收缩信号时晚期减速检测准确性的比较与验证。

Comparison and verification of detection accuracy for late deceleration with and without uterine contractions signals using convolutional neural networks.

作者信息

Sato Ikumi, Hirono Yuta, Shima Eiri, Yamamoto Hiroto, Yoshihara Kousuke, Kai Chiharu, Yoshida Akifumi, Uchida Fumikage, Kodama Naoki, Kasai Satoshi

机构信息

Department of Nursing, Faculty of Nursing, Niigata University of Health and Welfare, Niigata, Japan.

Major in Health and Welfare, Graduate School of Niigata University of Health and Welfare, Niigata, Japan.

出版信息

Front Physiol. 2025 Jan 23;16:1525266. doi: 10.3389/fphys.2025.1525266. eCollection 2025.

Abstract

INTRODUCTION

Cardiotocography (CTG) is used to monitor and evaluate fetal health by recording the fetal heart rate (FHR) and uterine contractions (UC) over time. Among these, the detection of late deceleration (LD), the early marker of fetal mild hypoxemia, is important, and the temporal relationship between FHR and UC is an essential factor in deciphering it. However, there is a problem with UC signals generally tending to have poor signal quality due to defects in installation or obesity in pregnant women. Since obstetricians evaluate potential LD signals only from the FHR signal when the UC signal quality is poor, we hypothesized that LD could be detected by capturing the morphological features of the FHR signal using Artificial Intelligence (AI). Therefore, this study compares models using FHR only (FHR-only model) and FHR with UC (FHR + UC model) constructed using a Convolutional Neural Network (CNN) to examine whether LD could be detected using only the FHR signal.

METHODS

The data used to construct the CNN model were obtained from the publicly available CTU-UHB database. We used 86 cases with LDs and 440 cases without LDs from the database, confirmed by expert obstetricians.

RESULTS

The results showed high accuracy with an area under the curve (AUC) of 0.896 for the FHR-only model and 0.928 for the FHR + UC model. Furthermore, in a validation using 23 cases in which obstetricians judged that the UC signals were poor and the FHR signal had an LD-like morphology, the FHR-only model achieved an AUC of 0.867.

CONCLUSION

This indicates that using only the FHR signal as input to the CNN could detect LDs and potential LDs with high accuracy. These results are expected to improve fetal outcomes by promptly alerting obstetric healthcare providers to signs of nonreassuring fetal status, even when the UC signal quality is poor, and encouraging them to monitor closely and prepare for emergency delivery.

摘要

引言

胎心监护(CTG)通过记录一段时间内的胎儿心率(FHR)和子宫收缩(UC)来监测和评估胎儿健康。其中,胎儿轻度低氧血症的早期标志物——晚期减速(LD)的检测很重要,FHR与UC之间的时间关系是解读它的关键因素。然而,由于安装缺陷或孕妇肥胖,UC信号通常存在信号质量差的问题。当UC信号质量较差时,产科医生仅根据FHR信号评估潜在的LD信号,因此我们推测可以通过人工智能(AI)捕捉FHR信号的形态特征来检测LD。因此,本研究比较了仅使用FHR构建的模型(仅FHR模型)和使用FHR与UC构建的模型(FHR + UC模型),这两种模型均采用卷积神经网络(CNN)构建,以检验仅使用FHR信号是否能检测出LD。

方法

用于构建CNN模型的数据来自公开可用的CTU-UHB数据库。我们从该数据库中选取了86例有LD的病例和440例无LD的病例,均经产科专家确认。

结果

结果显示,仅FHR模型的曲线下面积(AUC)为0.896,FHR + UC模型的AUC为0.928,准确率较高。此外,在一项验证中,使用了23例产科医生判断UC信号差且FHR信号具有类似LD形态的病例,仅FHR模型的AUC达到了0.867。

结论

这表明将仅FHR信号作为CNN的输入可以高精度地检测出LD和潜在的LD。这些结果有望通过及时提醒产科医护人员注意胎儿状况不佳的迹象来改善胎儿结局,即使UC信号质量较差,也能促使他们密切监测并为紧急分娩做好准备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4426/11798946/0a3c8b1cddaa/fphys-16-1525266-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验