Suppr超能文献

gutSMASH 预测人类肠道微生物群中的专业化初级代谢途径。

gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota.

机构信息

Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.

Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

出版信息

Nat Biotechnol. 2023 Oct;41(10):1416-1423. doi: 10.1038/s41587-023-01675-1. Epub 2023 Feb 13.

Abstract

The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.

摘要

肠道微生物群产生数百种小分子,其中许多调节宿主生理机能。尽管人们已经努力识别次生代谢物的生物合成基因,但肠道微生物组的化学产物主要由初级代谢物组成。在这里,我们介绍了用于识别初级代谢基因簇的 gutSMASH 算法,并使用它系统地分析肠道微生物组的代谢,在 4240 个高质量微生物基因组中鉴定出 19890 个基因簇。我们发现门之间的途径分布存在明显差异,反映了能量捕获的不同策略。这些数据解释了短链脂肪酸产生的分类学差异,并为每个分类单元提出了一个特征代谢生态位。对来自荷兰基于人群的队列的 1135 个人进行的分析表明,血浆和粪便中微生物组衍生代谢物的水平与相应代谢基因的宏基因组丰度几乎完全不相关,表明途径特异性基因调控和代谢物通量起着关键作用。这项工作是理解细菌分类群如何为微生物组的化学贡献差异的起点。

相似文献

1
gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota.
Nat Biotechnol. 2023 Oct;41(10):1416-1423. doi: 10.1038/s41587-023-01675-1. Epub 2023 Feb 13.
2
4
Microbiome-Metabolomics Analysis of the Impacts of Infection in BALB/C Mice.
Microbiol Spectr. 2023 Feb 14;11(1):e0217522. doi: 10.1128/spectrum.02175-22. Epub 2022 Dec 19.
6
Deciphering Gut Microbiota Dysbiosis and Corresponding Genetic and Metabolic Dysregulation in Psoriasis Patients Using Metagenomics Sequencing.
Front Cell Infect Microbiol. 2021 Apr 1;11:605825. doi: 10.3389/fcimb.2021.605825. eCollection 2021.
9
Children who develop celiac disease are predicted to exhibit distinct metabolic pathways among their gut microbiota years before diagnosis.
Microbiol Spectr. 2025 Mar 4;13(3):e0146824. doi: 10.1128/spectrum.01468-24. Epub 2025 Feb 4.
10
Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data.
mBio. 2014 Apr 22;5(2):e00889. doi: 10.1128/mBio.00889-14.

引用本文的文献

2
Highly accurate prophage island detection with PIDE.
Genome Biol. 2025 Aug 20;26(1):254. doi: 10.1186/s13059-025-03733-0.
4
Analysis of metagenomic data.
Nat Rev Methods Primers. 2025;5. doi: 10.1038/s43586-024-00376-6. Epub 2025 Jan 23.
5
Systematic pairwise co-cultures uncover predominant negative interactions among human gut bacteria.
Microbiome. 2025 Jul 7;13(1):161. doi: 10.1186/s40168-025-02156-0.
6
Draft genome sequencing of human pathogenic BD001 strain isolated from shrimp () in Bangladesh.
Microbiol Resour Announc. 2025 Aug 14;14(8):e0053525. doi: 10.1128/mra.00535-25. Epub 2025 Jul 7.
7
Intestinal pH: a major driver of human gut microbiota composition and metabolism.
Nat Rev Gastroenterol Hepatol. 2025 Jul 2. doi: 10.1038/s41575-025-01092-6.
8
Working together: gut microbe-microbe interactions shape host inflammation.
Infect Immun. 2025 Jul 8;93(7):e0051224. doi: 10.1128/iai.00512-24. Epub 2025 Jun 13.
9
Fecal metabolite profiling identifies critically ill patients with increased 30-day mortality.
Sci Adv. 2025 Jun 6;11(23):eadt1466. doi: 10.1126/sciadv.adt1466. Epub 2025 Jun 4.

本文引用的文献

1
Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome.
Nat Med. 2022 Nov;28(11):2333-2343. doi: 10.1038/s41591-022-02014-8. Epub 2022 Oct 10.
2
Clostridium sporogenes uses reductive Stickland metabolism in the gut to generate ATP and produce circulating metabolites.
Nat Microbiol. 2022 May;7(5):695-706. doi: 10.1038/s41564-022-01109-9. Epub 2022 May 2.
3
Mining genomes to illuminate the specialized chemistry of life.
Nat Rev Genet. 2021 Sep;22(9):553-571. doi: 10.1038/s41576-021-00363-7. Epub 2021 Jun 3.
5
A metabolic pathway for bile acid dehydroxylation by the gut microbiome.
Nature. 2020 Jun;582(7813):566-570. doi: 10.1038/s41586-020-2396-4. Epub 2020 Jun 17.
6
PICRUSt2 for prediction of metagenome functions.
Nat Biotechnol. 2020 Jun;38(6):685-688. doi: 10.1038/s41587-020-0548-6.
8
A computational framework to explore large-scale biosynthetic diversity.
Nat Chem Biol. 2020 Jan;16(1):60-68. doi: 10.1038/s41589-019-0400-9. Epub 2019 Nov 25.
9
Dietary L-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut.
Nat Microbiol. 2020 Jan;5(1):116-125. doi: 10.1038/s41564-019-0591-6. Epub 2019 Nov 4.
10
The MetaCyc database of metabolic pathways and enzymes - a 2019 update.
Nucleic Acids Res. 2020 Jan 8;48(D1):D445-D453. doi: 10.1093/nar/gkz862.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验