Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Nat Biotechnol. 2023 Oct;41(10):1416-1423. doi: 10.1038/s41587-023-01675-1. Epub 2023 Feb 13.
The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome.
肠道微生物群产生数百种小分子,其中许多调节宿主生理机能。尽管人们已经努力识别次生代谢物的生物合成基因,但肠道微生物组的化学产物主要由初级代谢物组成。在这里,我们介绍了用于识别初级代谢基因簇的 gutSMASH 算法,并使用它系统地分析肠道微生物组的代谢,在 4240 个高质量微生物基因组中鉴定出 19890 个基因簇。我们发现门之间的途径分布存在明显差异,反映了能量捕获的不同策略。这些数据解释了短链脂肪酸产生的分类学差异,并为每个分类单元提出了一个特征代谢生态位。对来自荷兰基于人群的队列的 1135 个人进行的分析表明,血浆和粪便中微生物组衍生代谢物的水平与相应代谢基因的宏基因组丰度几乎完全不相关,表明途径特异性基因调控和代谢物通量起着关键作用。这项工作是理解细菌分类群如何为微生物组的化学贡献差异的起点。