Suppr超能文献

用于蛋白质-蛋白质相互作用分析的持久Tor代数

Persistent Tor-algebra for protein-protein interaction analysis.

作者信息

Liu Xiang, Feng Huitao, Lü Zhi, Xia Kelin

机构信息

Chern Institute of Mathematics and LPMC, Nankai University, Tianjin, China, 300071.

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

出版信息

Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad046.

Abstract

Protein-protein interactions (PPIs) play crucial roles in almost all biological processes from cell-signaling and membrane transport to metabolism and immune systems. Efficient characterization of PPIs at the molecular level is key to the fundamental understanding of PPI mechanisms. Even with the gigantic amount of PPI models from graphs, networks, geometry and topology, it remains as a great challenge to design functional models that efficiently characterize the complicated multiphysical information within PPIs. Here we propose persistent Tor-algebra (PTA) model for a unified algebraic representation of the multiphysical interactions. Mathematically, our PTA is inherently algebraic data analysis. In our PTA model, protein structures and interactions are described as a series of face rings and Tor modules, from which PTA model is developed. The multiphysical information within/between biomolecules are implicitly characterized by PTA and further represented as PTA barcodes. To test our PTA models, we consider PTA-based ensemble learning for PPI binding affinity prediction. The two most commonly used datasets, i.e. SKEMPI and AB-Bind, are employed. It has been found that our model outperforms all the existing models as far as we know. Mathematically, our PTA model provides a highly efficient way for the characterization of molecular structures and interactions.

摘要

蛋白质-蛋白质相互作用(PPIs)在几乎所有生物过程中都起着关键作用,从细胞信号传导、膜运输到新陈代谢和免疫系统。在分子水平上对PPIs进行有效的表征是深入理解PPI机制的关键。尽管有大量来自图形、网络、几何和拓扑的PPI模型,但设计能够有效表征PPIs中复杂多物理信息的功能模型仍然是一个巨大的挑战。在此,我们提出了持久环面代数(PTA)模型,用于对多物理相互作用进行统一的代数表示。从数学角度来看,我们的PTA本质上是代数数据分析。在我们的PTA模型中,蛋白质结构和相互作用被描述为一系列面环和Tor模,在此基础上发展出PTA模型。生物分子内部/之间的多物理信息由PTA隐含地表征,并进一步表示为PTA条形码。为了测试我们的PTA模型,我们考虑基于PTA的集成学习来预测PPI结合亲和力。使用了两个最常用的数据集,即SKEMPI和AB-Bind。据我们所知,已发现我们的模型优于所有现有模型。从数学角度来看,我们的PTA模型为表征分子结构和相互作用提供了一种高效的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验