School of Computer Science from the University of Birmingham, UK.
Centre for Artificial Intelligence Driven Drug Discovery at Macao Polytechnic University.
Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad310.
The accurate prediction of the effect of amino acid mutations for protein-protein interactions (PPI $\Delta \Delta G$) is a crucial task in protein engineering, as it provides insight into the relevant biological processes underpinning protein binding and provides a basis for further drug discovery. In this study, we propose MpbPPI, a novel multi-task pre-training-based geometric equivariance-preserving framework to predict PPI $\Delta \Delta G$. Pre-training on a strictly screened pre-training dataset is employed to address the scarcity of protein-protein complex structures annotated with PPI $\Delta \Delta G$ values. MpbPPI employs a multi-task pre-training technique, forcing the framework to learn comprehensive backbone and side chain geometric regulations of protein-protein complexes at different scales. After pre-training, MpbPPI can generate high-quality representations capturing the effective geometric characteristics of labeled protein-protein complexes for downstream $\Delta \Delta G$ predictions. MpbPPI serves as a scalable framework supporting different sources of mutant-type (MT) protein-protein complexes for flexible application. Experimental results on four benchmark datasets demonstrate that MpbPPI is a state-of-the-art framework for PPI $\Delta \Delta G$ predictions. The data and source code are available at https://github.com/arantir123/MpbPPI.
准确预测氨基酸突变对蛋白质-蛋白质相互作用(PPI $\Delta \Delta G$)的影响是蛋白质工程中的一项关键任务,因为它深入了解了蛋白质结合所涉及的相关生物学过程,并为进一步的药物发现提供了基础。在这项研究中,我们提出了 MpbPPI,这是一种基于多任务预训练的新型几何等变保持框架,用于预测 PPI $\Delta \Delta G$。我们利用严格筛选的预训练数据集进行预训练,以解决缺乏具有 PPI $\Delta \Delta G$ 值注释的蛋白质-蛋白质复合物结构的问题。MpbPPI 采用多任务预训练技术,迫使框架学习不同尺度下蛋白质-蛋白质复合物的全面骨干和侧链几何规律。预训练后,MpbPPI 可以生成高质量的表示,捕捉标记的蛋白质-蛋白质复合物的有效几何特征,用于下游 $\Delta \Delta G$ 预测。MpbPPI 是一个可扩展的框架,支持不同来源的突变型(MT)蛋白质-蛋白质复合物,具有灵活的应用。在四个基准数据集上的实验结果表明,MpbPPI 是一种用于 PPI $\Delta \Delta G$ 预测的最先进的框架。数据和源代码可在 https://github.com/arantir123/MpbPPI 上获得。